Search
Close this search box.

Advances and challenges in modeling inherited peripheral neuropathies using iPSCs – Experimental & Molecular Medicine

  • Baets, J., De Jonghe, P. & Timmerman, V. Recent advances in Charcot–Marie–Tooth disease. Curr. Opin. Neurol. 27, 532–540 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pisciotta, C. & Shy, M. E. Neuropathy. Handb. Clin. Neurol 148, 653–665 (2018).

  • Saporta, M. A. & Shy, M. E. Inherited peripheral neuropathies. Neurol. Clin. 31, 597–619 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Passage, E. et al. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat. Med. 10, 396–401 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, R. A. High-dosage ascorbic acid treatment in Charcot-Marie-Tooth disease type 1A. JAMA Neurol. 70, 981–987 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pareyson, D. et al. Ascorbic acid in Charcot–Marie–Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a double-blind randomised trial. Lancet Neurol. 10, 320–328 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verhamme, C. et al. Oral high dose ascorbic acid treatment for one year in young CMT1A patients: a randomised, double-blind, placebo-controlled phase II trial. BMC Med. 7, 70 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns, J. et al. Ascorbic acid for Charcot–Marie–Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial. Lancet Neurol. 8, 537–544 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garofalo, K. et al. Oral l-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Investig. 121, 4735–4745 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fridman, V. et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 92, 359 (2019).

    Article 

    Google Scholar
     

  • Colman, A. Profile of John Gurdon and Shinya Yamanaka, 2012 Nobel Laureates in medicine or physiology. Proc. Natl Acad. Sci. USA 110, 5740–5741 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saporta, M. A. et al. Axonal Charcot-Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp. Neurol. 263, 190–199 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harschnitz, O. et al. Autoantibody pathogenicity in a multifocal motor neuropathy induced pluripotent stem cell-derived model. Ann. Neurol. 80, 71–88 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez-Siles, G. et al. Energy metabolism and mitochondrial defects in X-linked Charcot-Marie-Tooth (CMTX6) iPSC-derived motor neurons with the p.R158H PDK3 mutation. Sci. Rep. 10, 9262 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutrupi, A. N. et al. Novel gene–intergenic fusion involving ubiquitin E3 ligase UBE3C causes distal hereditary motor neuropathy. Brain 146, 880–897 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Maury, Y. et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat. Biotechnol. 33, 89–96 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, W. et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 8, 861 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Lent, J. et al. Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction. Brain 144, 2471–2485 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faye, P.-A. et al. Optimized protocol to generate spinal motor neuron cells from induced pluripotent stem cells from Charcot Marie Tooth patients. Brain Sci. 10, 407 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaVaute, T. M. et al. Regulation of neural specification from human embryonic. Stem Cells BMP Fgf. Stem Cells 27, 1741–1749 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Miressi, F. et al. GDAP1 involvement in mitochondrial function and oxidative stress, investigated in a Charcot-Marie-Tooth model of hiPSCs-derived motor neurons. Biomedicines 9, 945 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feliciano, C. M. et al. Allele-specific gene editing rescues pathology in a human model of Charcot-Marie-Tooth disease type 2E. Front Cell Dev. Biol. 9, 723023 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limone, F. et al. Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues. Cell Rep. 42, 111896 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez-Siles, G. et al. Modelling the pathogenesis of X-linked distal hereditary motor neuropathy using patient-derived iPSCs. Dis. Model Mech. 13, dmm041541 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, A. J. et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep. Med. 2, 100345 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romano, R. et al. Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease. Cell. Mol. Life Sci. 78, 351–372 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrenk-Siemens, K. et al. PIEZO2 is required for mechanotransduction in human stem cell–derived touch receptors. Nat. Neurosci. 18, 10–16 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Middleton, S. J. et al. Studying human nociceptors: from fundamentals to clinic. Brain 144, 1312–1335 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nickolls, A. R. et al. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. Cell Rep. 30, 932–946 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshawaf, A. J. et al. Phenotypic and functional characterization of peripheral sensory neurons derived from human embryonic stem cells. Sci. Rep. 8, 603 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito-Diaz, K., Street, J. R., Ulrichs, H. & Zeltner, N. Derivation of peripheral nociceptive, mechanoreceptive, and proprioceptive sensory neurons from the same culture of human pluripotent stem cells. Stem Cell Rep. 16, 446–457 (2021).

    Article 

    Google Scholar
     

  • Ernsberger, U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res. 336, 349–384 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeidler, M. et al. NOCICEPTRA: gene and microRNA signatures and their trajectories characterizing human iPSC‐derived nociceptor maturation. Adv. Sci. 8, 2102354 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Eberhardt, E. et al. Pattern of functional TTX-resistant sodium channels reveals a developmental stage of human iPSC- and ESC-derived nociceptors. Stem Cell Rep. 5, 305–313 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Deng, T. et al. Scalable generation of sensory neurons from human pluripotent stem cells. Stem Cell Rep. 18, 1030–1047 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Oh, Y. et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19, 95–106 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirino, K., Nakahata, T., Taguchi, T. & Saito, M. K. Efficient derivation of sympathetic neurons from human pluripotent stem cells with a defined condition. Sci. Rep. 8, 12865 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frith, T. J. et al. Human axial progenitors generate trunk neural crest cells in vitro. Elife 7, e35786 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H.-F. et al. Norepinephrine transporter defects lead to sympathetic hyperactivity in Familial Dysautonomia models. Nat. Commun. 13, 7032 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H.-F. et al. Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development. Cell Stem Cell. S1934–5909, 00092–4. https://pubmed.ncbi.nlm.nih.gov/38608707/ (2024) Online ahead of print.

  • Muhammad, A. et al. Cell transplantation strategies for acquired and inherited disorders of peripheral myelin. Ann. Clin. Transl. Neurol. 5, 186–200 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z., Powell, R., Kankowski, S., Phillips, J. B. & Haastert-Talini, K. Culture conditions for human induced pluripotent stem cell-derived Schwann cells: a two-centre study. Int. J. Mol. Sci. 24, 5366 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majd, H. et al. Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. Cell Stem Cell 30, 632–647 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H.-S., Kim, J. Y., Song, C. L., Jeong, J. E. & Cho, Y. S. Directly induced human Schwann cell precursors as a valuable source of Schwann cells. Stem Cell Res. Ther. 11, 257 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H.-S. et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for Myelin repair. Stem Cell Rep. 8, 1714–1726 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee-Clavin, B. et al. Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat. Biomed. Eng. 3, 571–582 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prior, R. et al. Defective Schwann cell lipid metabolism alters plasma membrane dynamics in Charcot-Marie-Tooth disease 1A. Preprint at bioRxiv https://doi.org/10.1101/2023.04.02.535224 (2023).

  • Adameyko, I. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139, 366–379 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paratore, C., Goerich, D. E., Suter, U., Wegner, M. & Sommer, L. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128, 3949–3961 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyachuk, V. et al. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345, 82–87 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kastriti, M. E. et al. Schwann cell precursors represent a neural crest‐like state with biased multipotency. EMBO J. 41, 108780 (2022).

    Article 

    Google Scholar
     

  • Xie, M. et al. Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc. Natl Acad. Sci. USA 116, 15068–15073 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jessen, K. R. & Mirsky, R. Schwann cell precursors; multipotent glial cells in embryonic nerves. Front. Mol. Neurosci. 12, 69 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jessen, K. R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stassart, R. M. & Woodhoo, A. Axo‐glial interaction in the injured PNS. Dev. Neurobiol. 81, 490–506 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nitzan, E., Pfaltzgraff, E. R., Labosky, P. A. & Kalcheim, C. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc. Natl Acad. Sci. USA 110, 12709–12714 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Raamsdonk, C. D. & Deo, M. Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res. 26, 634–645 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Colombo, S. et al. Stabilization of β-catenin promotes melanocyte specification at the expense of the Schwann cell lineage. Development 149, dev194407 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marathe, H. G. et al. BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation. Nucleic Acids Res. 45, 6442–6458 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slutsky, S. G., Kamaraju, A. K., Levy, A. M., Chebath, J. & Revel, M. Activation of Myelin genes during transdifferentiation from melanoma to glial cell phenotype. J. Biol. Chem. 278, 8960–8968 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rambow, F. et al. New functional signatures for understanding melanoma biology from tumor cell lineage-specific analysis. Cell Rep. 13, 840–853 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, A. et al. HDAC6 inhibition corrects electrophysiological and axonal transport deficits in a human stem cell‐based model of Charcot‐Marie‐Tooth disease (type 2D). Adv. Biol. 6, 2101308 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kennerson, M. L. et al. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am. J. Hum. Genet. 86, 343–352 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. Sorbitol reduction via govorestat ameliorates synaptic dysfunction and neurodegeneration in sorbitol dehydrogenase deficiency. JCI Insight 8, e164954 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDermott, L. A. et al. Defining the functional role of NaV1.7 in human nociception. Neuron 101, 905–919 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haidar, M. et al. Neuropathy-causing mutations in HSPB1 impair autophagy by disturbing the formation of SQSTM1/p62 bodies. Autophagy 15, 1051–1068 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alderson, T. R. et al. A weakened interface in the P182L variant of HSP27 associated with severe Charcot-Marie-Tooth neuropathy causes aberrant binding to interacting proteins. EMBO J. 40, 103811 (2021).

    Article 

    Google Scholar
     

  • Maciel, R., Correa, R., Bosso Taniguchi, J., Prufer Araujo, I. & Saporta, M. A. Human tridimensional neuronal cultures for phenotypic drug screening in inherited peripheral neuropathies. Clin. Pharm. Ther. 107, 1231–1239 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kenvin, S. et al. Threshold of heteroplasmic truncating MT-ATP6 mutation in reprogramming, Notch hyperactivation and motor neuron metabolism. Hum. Mol. Genet. 31, 958–974 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carrió, M. et al. Reprogramming captures the genetic and tumorigenic properties of neurofibromatosis type 1 plexiform neurofibromas. Stem Cell Rep. 12, 411–426 (2019).

    Article 

    Google Scholar
     

  • Cutrupi, A. N., Brewer, M. H., Nicholson, G. A. & Kennerson, M. L. Structural variations causing inherited peripheral neuropathies: a paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol. Genet. Genom. Med. 6, 422–433 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drew, A. P., Cutrupi, A. N., Brewer, M. H., Nicholson, G. A. & Kennerson, M. L. A 1.35 Mb DNA fragment is inserted into the DHMN1 locus on chromosome 7q34–q36.2. Hum. Genet. 135, 1269–1278 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brewer, M. H. et al. Whole genome sequencing identifies a 78 kb insertion from chromosome 8 as the cause of Charcot-Marie-Tooth neuropathy CMTX3. PLoS Genet. 12, 1006177 (2016).

    Article 

    Google Scholar
     

  • D’ydewalle, C. et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 17, 968–974 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalmar, B. et al. Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie Tooth disease. Hum. Mol. Genet. 26, 3313–3326 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baloh, R. H., Schmidt, R. E., Pestronk, A. & Milbrandt, J. Altered Axonal Mitochondrial Transport In The Pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci. 27, 422–430 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alecu, I. et al. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J. Lipid Res. 58, 42–59 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adriaenssens, E. et al. Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat. Cell Biol. 25, 467–480 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagemann, C. et al. Axonal length determines distinct homeostatic phenotypes in human iPSC derived motor neurons on a bioengineered platform. Adv. Health. Mater. 11, 2101817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Butler, L. et al. HDAC6 inhibition partially alleviates mitochondrial trafficking defects and restores motor function in human motor neuron and zebrafish models of Charcot-Marie-Tooth disease type 2 A. Preprint at bioRxiv https://doi.org/10.1101/2022.07.05.498819 (2022).

  • Pal, A. et al. High content organelle trafficking enables disease state profiling as powerful tool for disease modelling. Sci. Data 5, 180241 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nijssen, J., Aguila, J., Hoogstraaten, R., Kee, N. & Hedlund, E. Axon-Seq decodes the motor axon transcriptome and its modulation in response to ALS. Stem Cell Rep. 11, 1565–1578 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Badiola-Mateos, M., Osaki, T., Kamm, R. D. & Samitier, J. In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system. Sci. Rep. 12, 21318 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monje, P. V., Sant, D. & Wang, G. Phenotypic and functional characteristics of human Schwann cells as revealed by cell-based assays and RNA-SEQ. Mol. Neurobiol. 55, 6637–6660 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, A. J. et al. Co-cultures with stem cell-derived human sensory neurons reveal regulators of peripheral myelination. Brain 140, 898–913 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, A. D. et al. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. Sci. Rep. 9, 8921 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louit, A., Beaudet, M.-J., Pépin, R. & Berthod, F. Differentiation of human induced pluripotent stem cells into mature and myelinating Schwann cells. Tissue Eng. Part C. Methods 29, 134–143 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabblah, T. T. et al. A novel mouse model carrying a human cytoplasmic dynein mutation shows motor behavior deficits consistent with Charcot-Marie-Tooth type 2 O disease. Sci. Rep. 8, 1739 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ang, E.-T. et al. Motor axonal sprouting and neuromuscular junction loss in an animal model of Charcot-Marie-Tooth disease. J. Neuropathol. Exp. Neurol. 69, 281–293 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sleigh, J. N., Grice, S. J., Burgess, R. W., Talbot, K. & Cader, M. Z. Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum. Mol. Genet. 23, 2639–2650 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, R. A. et al. Cellular and molecular anatomy of the human neuromuscular junction. Cell Rep. 21, 2348–2356 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoklund Dittlau, K. et al. Human motor units in microfluidic devices are impaired by FUS mutations and improved by HDAC6 inhibition. Stem Cell Rep. 16, 2213–2227 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stoklund Dittlau, K. et al. FUS-ALS hiPSC-derived astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms. Mol. Neurodegener. 18, 5 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose, N. et al. Receptor clustering and pathogenic complement activation in myasthenia gravis depend on synergy between antibodies with multiple subunit specificities. Acta Neuropathol. 144, 1005–1025 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sleigh, J. N. et al. Boosting peripheral BDNF rescues impaired in vivo axonal transport in CMT2D mice. JCI Insight 8, e157191 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amin, N. D. & Paşca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • James, O. G. et al. iPSC-derived myelinoids to study myelin biology of humans. Dev. Cell 56, 1346–1358 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, J. D. et al. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat. Commun. 12, 4744 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Lent, J. et al. Downregulation of PMP22 ameliorates myelin defects in iPSC-derived human organoid cultures of CMT1A. Brain 146, 2885–2896 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Faustino Martins, J. M. et al. Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell 26, 172–186 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rockel, A. F., Wagner, N., Spenger, P., Ergün, S. & Wörsdörfer, P. Neuro-mesodermal assembloids recapitulate aspects of peripheral nervous system development in vitro. Stem Cell Rep. 18, 1155–1165 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lischka, A. et al. Genetic pain loss disorders. Nat. Rev. Dis. Prim. 8, 41 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rousi, E. et al. An innervated skin 3D in vitro model for dermatological research. Vitr. Models 2, 113–121 (2022).

    Article 

    Google Scholar
     

  • Muller, Q. et al. Development of an innervated tissue-engineered skin with human sensory neurons and Schwann cells differentiated from iPS cells. Acta Biomater. 82, 93–101 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juneja, M. et al. PFN2 and GAMT as common molecular determinants of axonal Charcot-Marie-Tooth disease. J. Neurol. Neurosurg. Psychiatry 89, 870–878 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jennings, M. J. et al. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 145, 3999–4015 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Muriana, A. et al. CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves. Sci. Rep. 6, 25663 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, I. M. et al. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc. Natl Acad. Sci. USA 106, 20960–20965 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, D. et al. Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot–Marie–Tooth disease in mice. Brain 138, 3193–3205 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Klein, D. et al. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot‐Marie‐Tooth 1A. Glia 70, 1100–1116 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez-Sanchez, J. A. et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell Biol. 210, 153–168 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, H. T., Kim, J. K. & Tricaud, N. The conceptual introduction of the “demyelinating Schwann cell” in peripheral demyelinating neuropathies. Glia 67, 571–581 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jang, S. Y. et al. Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia 65, 1848–1862 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Weiß, E. M., Geldermann, M., Martini, R. & Klein, D. Macrophages influence Schwann cell myelin autophagy after nerve injury and in a model of Charcot‐Marie‐Tooth disease. J. Peripher. Nerv. Syst. 28, 341–350 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vital, A., Vital, C., Julien, J. & Fontan, D. Occurrence of active demyelinating lesions in children with hereditary motor and sensory neuropathy (HMSN) type I. Acta Neuropathol. 84, 433–436 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martini, R. & Toyka, K. V. Immune-mediated components of hereditary demyelinating neuropathies: lessons from animal models and patients. Lancet Neurol. 3, 457–465 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Ginsberg, L. Coexistent hereditary and inflammatory neuropathy. Brain 127, 193–202 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Malandrini, A., Villanova, M., Dotti, M. T. & Federico, A. Acute inflammatory neuropathy in Charcot-Marie-Tooth disease. Neurology 52, 859–861 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Lizarbe, S. et al. Neuroinflammation in the pathogenesis of axonal Charcot-Marie-Tooth disease caused by lack of GDAP1. Exp. Neurol. 320, 113004 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • León, M. et al. Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response. Cell Death Discov. 9, 217 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, C.-H. et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183, 636–649 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Kim, H.-S. & Chung, J. H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 55, 510–519 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vatine, G. D. et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kilpinen, H. et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546, 686 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pantazis, C. B. et al. A reference human induced pluripotent stem cell line for large-scale collaborative studies. Cell Stem Cell 29, 1685–1702 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boczonadi, V. et al. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Hum. Mol. Genet. 27, 2187–2204 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco, A. et al. Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A. Elife 9, e61119 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wainger, B. J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17–24 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanen, K. et al. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J. Tissue Eng. Regen. Med. 11, 3362–3372 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martens, W. et al. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue‐engineered collagen construct in vitro. FASEB J. 28, 1634–1643 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadman, M. FDA no longer has to require animal testing for new drugs. Science 379, 127–128 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imamura, K. et al. The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci. Transl. Med 9, eaaf3962 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Osaki, T., Uzel, S. & Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci. Adv. 4, 5847 (2018).

    Article 

    Google Scholar
     

  • Imamura, K. et al. Safety and tolerability of bosutinib in patients with amyotrophic lateral sclerosis (iDReAM study): A multicentre, open-label, dose-escalation phase 1 trial. EClinicalMedicine 53, 101707 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morimoto, S. et al. Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery. Cell Stem Cell 30, 766–780 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocha, A. G. et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2. Science 360, 336–341 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varkuti, B. H. et al. Neuron-based high-content assay and screen for CNS active mitotherapeutics. Sci. Adv. 6, 8702 (2020).

    Article 

    Google Scholar
     

  • Shlevkov, E. et al. A high-content screen identifies TPP1 and Aurora B as regulators of axonal mitochondrial transport. Cell Rep. 28, 3224–3237 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-Y. et al. HDAC6 inhibitors rescued the defective axonal mitochondrial movement in motor neurons derived from the induced pluripotent stem cells of peripheral neuropathy patients with HSPB1 mutation. Stem Cells Int. 2016, 1–14 (2016).


    Google Scholar
     

  • Chumakov, I. et al. Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy. Orphanet J. Rare Dis. 9, 201 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prukop, T. et al. Early short-term PXT3003 combinational therapy delays disease onset in a transgenic rat model of Charcot-Marie-Tooth disease 1A (CMT1A). PLoS ONE 14, 0209752 (2019).

    Article 

    Google Scholar
     

  • Thenmozhi, R., Lee, J.-S., Park, N. Y., Choi, B.-O. & Hong, Y. B. Gene therapy options as new treatment for inherited peripheral neuropathy. Exp. Neurobiol. 29, 177–188 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mercuri, E. et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378, 625–635 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizzo, F. et al. Combined RNA interference and gene replacement therapy targeting MFN2 for the treatment of Charcot-Marie-Tooth type 2 A. Cell Mol Life Sci. 80, 373 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouhy, D. et al. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol. 135, 131–148 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kammoun, M. et al. The invalidation of HspB1 gene in mouse alters the ultrastructural phenotype of muscles. PLoS ONE 11, e0158644 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L., Min, J.-N., Masters, S., Mivechi, N. F. & Moskophidis, D. Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. Genesis 45, 487–501 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baylot, V. et al. Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol. Ther. 20, 2244–2256 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuma, J. et al. Lipid nanoparticles deliver mRNA to the brain after an intracerebral injection. Biochemistry 62, 3533–3547 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stahl, E. C. et al. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs. Mol. Ther. 31, 2422–2438 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, B.Y. & Zhang, S.C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc. 4, 1295–1304 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhardt, P. et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One. 8, e59252 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amoroso, M.W. et al. Accelerated high-yield generation of limb-innervating motor neuronsfrom human stem cells. J Neurosci. 33, 574–586 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandopulle, M.S. et al. Transcription Factor-Mediated Differentiation of Human iPSCs into Neurons. Curr Protoc Cell Biol. 79, e51 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, L. et al. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs. Stem Cell Reports. 10, 120–133 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitani-Morii, F. et al. Analysis of neural crest cells from Charcot-Marie-Tooth disease patients demonstrates disease-relevant molecular signature. Neuroreport 28, 814–821 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sainio, M.T. et al. Absence of NEFL in patient-specific neurons in early-onset Charcot-Marie-Tooth neuropathy. Neurol Genet 4, e244 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sainio, M.T. et al. Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons. Front Cell Dev Biol 9, 820105 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzo, F. et al. Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Hum Mol Genet 25, 4266–4281 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, A.S.T. et al. HDAC6 Inhibition Corrects Electrophysiological and Axonal Transport Deficits in a Human Stem Cell-Based Model of Charcot-Marie-Tooth Disease (Type 2D). Adv Biol 6, e2101308 (2021).

    Article 

    Google Scholar
     

  • Wolf, C. et al. GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton. Commun Biol 5, 541 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, G. et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol. 30, 1244–1248 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeltner, N. et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22, 1421–1427 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajiro, M. et al. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat Commun. 12, 4507 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar