Search
Close this search box.

Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging – Nature Communications

  • Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, J. et al. An activatable NIR-II fluorescent reporter for in vivo imaging of amyloid-β plaques. Angew. Chem. Int. Ed. 62, e202216351 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, M. H. et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe. J. Am. Chem. Soc. 136, 14136–14142 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Acidity-activated charge conversion of 177Lu-labeled nanoagent for the enhanced photodynamic radionuclide therapy of cancer. ACS Appl. Mater. Interfaces 14, 3875–3884 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. M., Aalipour, A., Vermesh, O., Yu, J. H. & Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. An activatable polymeric nanoprobe for fluorescence and photoacoustic imaging of tumor-associated neutrophils in cancer immunotherapy. Angew. Chem. Int. Ed. 61, e202203184 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, R. et al. An acidity-initiated self-assembly/disassembly nanoprobe to switch on fluorescence for tumor-targeted near-infrared imaging. Nano Lett. 22, 151–156 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, L. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Zhang, G., Zeng, Z. & Pu, K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem. Soc. Rev. 51, 566–593 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, D. et al. 131I-labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer. J. Mater. Chem. B 9, 9316–9323 (2021).

  • Li, J. et al. Near-infrared photoactivatable semiconducting polymer nanoblockaders for metastasis-inhibited combination cancer therapy. Adv. Mater. 31, e1905091 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. An activatable polymeric reporter for near-infrared fluorescent and photoacoustic imaging of invasive cancer. Angew. Chem. Int. Ed. 59, 7018–7023 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. A renal-clearable activatable molecular probe for fluoro-photacoustic and radioactive imaging of cancer biomarkers. Small 18, e2201334 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. An activity-based fluorescent probe for imaging fluctuations of peroxynitrite (ONOO) in the Alzheimer’s Disease brain. Angew. Chem. Int. Ed. 61, e202206894 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, G. et al. FAP-alpha-instructed coumarin excimer formation for high contrast fluorescence imaging of tumor. Nano Lett. 22, 6782–6786 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Miao, Q. et al. Near-infrared fluorescent molecular probe for sensitive imaging of keloid. Angew. Chem. Int. Ed. 57, 1256–1260 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, M. et al. An activatable phototheranostic probe for anti-hypoxic Type I photodynamic- and immuno-therapy of cancer. Adv. Mater. 36, e2305243 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Miao, Q. & Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30, e1801778 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, R. R. et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14, 347–364 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 15, 104–109 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q., Zeng, J., Miao, Q. & Gao, M. Self-illuminating agents for deep-tissue optical imaging. Front. Bioeng. Biotechnol. 7, 326 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • del Rosal, B. & Benayas, A. Strategies to overcome autofluorescence in nanoprobe-driven in vivo fluorescence imaging. Small Methods 2, 1800075 (2018).

    Article 

    Google Scholar
     

  • Frangioni, J. V. Self-illuminating quantum dots light the way. Nat Biotechnol. 24, 326–328 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Y. et al. Intracellular self-assembly of cyclic d-luciferin nanoparticles for persistent bioluminescence imaging of fatty acid amide hydrolase. ACS Nano 10, 7147–7153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Realization of firefly bioluminescence cycle in vitro and in cells. Biosens. Bioelectron. 220, 114860 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross, S. et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nat. Med. 15, 455–461 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. An APN‐activated chemiluminescent probe for image‐guided surgery of malignant tumors. Adv. Opt. Mater. 10, 2102709 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J. et al. Chemiluminescent probes with long-lasting high brightness for in vivo imaging of neutrophils. Angew. Chem. Int. Ed. 61, e202203235 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hai, Z., Li, J., Wu, J., Xu, J. & Liang, G. Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J. Am. Chem Soc. 139, 1041–1044 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaffer, T. M., Pratt, E. C. & Grimm, J. Utilizing the power of Cerenkov light with nanotechnology. Nat. Nanotechnol. 12, 106–117 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Ultrasmall downconverting nanoparticle for enhanced Cerenkov imaging. Nano Lett. 21, 4217–4224 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Yin, C., Liew, S. S., Lee, C. S. & Pu, K. Organic semiconducting luminophores for near‐infrared afterglow, chemiluminescence, and bioluminescence imaging. Adv. Funct. Mater. 31, 2106154 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhen, X., Xie, C. & Pu, K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57, 3938–3942 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. A highly bright near-infrared afterglow luminophore for activatable ultrasensitive in vivo imaging. Angew. Chem. Int. 63, e202313117 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Near-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 144, 6719–6726 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. 1O2-relevant afterglow luminescence of chlorin nanoparticles for discriminative detection and isotopic analysis of H2O and D2O. Anal. Chem. 95, 5340–5345 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, D., Xie, C., Li, J., Lyu, Y. & Pu, K. Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv. Healthc. Mater. 7, e1800329 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, J., Zhu, R. & Miao, Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens. Bioelectron. 210, 114330 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem. Sci. 11, 419–428 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Organic nanoparticles with persistent luminescence for in vivo afterglow imaging-guided photodynamic therapy. Chemistry 27, 6911–6916 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, X. et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, C., Zhen, X., Miao, Q., Lyu, Y. & Pu, K. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30, e1801331 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Palner, M., Pu, K., Shao, S. & Rao, J. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).

    Article 
    CAS 

    Google Scholar
     

  • He, S., Xie, C., Jiang, Y. & Pu, K. An organic afterglow protheranostic nanoassembly. Adv. Mater. 31, e1902672 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 11, 446 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, W. et al. An activatable afterglow/MRI bimodal nanoprobe with fast response to H2S for in vivo imaging of acute hepatitis. Angew. Chem. Int. Ed. 61, e202111759 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, C. et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc. 144, 3429–3441 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Z. et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death. Angew. Chem. Int. Ed. 61, e202209793 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. A self-sustaining near-infrared afterglow chemiluminophore for high-contrast activatable imaging. Angew. Chem. Int. Ed. 63, e202318545 (2024).

  • Liu, Y., Teng, L., Lou, X., Zhang, X. & Song, G. “Four-in-one” design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging. J. Am. Chem. Soc. 145, 5134–5144 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 13, 2216 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, Y. et al. Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew. Chem. Int. Ed. 58, 4983–4987 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Annalen. Der. Physik. 437, 55–75 (1948).

    Article 
    ADS 

    Google Scholar
     

  • Barnoin, G. et al. Intermolecular dark resonance energy transfer (DRET): upgrading fluorogenic DNA sensing. Nucleic. Acids. Res. 49, e72 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Midden, W. R. & Wang, S. Y. Singlet oxygen generation for solution kinetics: clean and simple. J. Am. Chem. Soc. 105, 4129–4135 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Yoshioka, Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 5, 3591 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zou, J. H. et al. Singlet oxygen “afterglow” therapy with NIR-II fluorescent molecules. Adv. Mater. 33, 2103627 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Souslova, E. A., Mironova, K. E. & Deyev, S. M. Applications of genetically encoded photosensitizer miniSOG: from correlative light electron microscopy to immunophotosensitizing. J. Biophotonics 10, 338 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dysart, J. S. & Patterson, M. S. Characterization of photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys. Med. Biol. 50, 2597–2616 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jian, C., Wang, Y., Liu, H. & Yin, Z. A biotin-modified and H2O2-activatable theranostic nanoplatform for enhanced photothermal and chemical combination cancer therapy. Eur. J. Pharm. Biopharm. 177, 24–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatta, R. et al. Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines. Nat. Commun. 14, 8047 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, W., Kim, B., Rutka, J. & Chan, W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotech. 3, 145–150 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yoon, J. et al. A chemical biology approach reveals a dependency of glioblastoma on biotin distribution. Sci. Adv. 7, eabf6033 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, S. et al. Cancer cell-specific fluorescent prodrug delivery platforms. Adv. Sci. 10, 2207768 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, P. et al. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 9, 130 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar