Absence of the primary cilia formation gene Talpid3 impairs muscle stem cell function – Communications Biology

  • Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  • May, S. R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haycraft, C. J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui, C. C. & Angers, S. Gli proteins in development and disease. Annu. Rev. Cell Dev. Biol. 27, 513–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Aanstad, P. et al. The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling. Curr. Biol. 19, 1034–1039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangs, F. & Anderson, K. V. Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9, a028175 (2017).

  • Kopinke, D., Norris, A. M. & Mukhopadhyay, S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin. Cell Dev. Biol. 110, 89–103 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Ng, D. C. H., Ho, U. Y. & Grounds, M. D. Cilia, centrosomes and skeletal muscle. Int. J. Mol. Sci. 22, 9605 (2021).

  • Yin, Y. et al. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development 136, 655–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T., Kim, S., Lin, Y. C., Inoue, T. & Dynlacht, B. D. The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. J. Cell Biol. 204, 215–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey, M. G. et al. The chicken talpid3 gene encodes a novel protein essential for Hedgehog signaling. Genes Dev. 20, 1365–1377 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ede, D. A. & Kelly, W. A. Developmental abnormalities in the head region of the Talpid mutant of the fowl. J. Embryol. Exp. Morphol. 12, 161–182 (1964).

    CAS  PubMed  Google Scholar 

  • Bangs, F. et al. Generation of mice with functional inactivation of talpid3, a gene first identified in chicken. Development 138, 3261–3272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munsterberg, A. E., Kitajewski, J., Bumcrot, D. A., McMahon, A. P. & Lassar, A. B. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev. 9, 2911–2922 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Borycki, A., Brown, A. M. & Emerson, C. P. Jr. Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 127, 2075–2087 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Borello, U. et al. The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133, 3723–3732 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson, M. K. et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev. 16, 114–126 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott, A. et al. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development 132, 345–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hu, J. K., McGlinn, E., Harfe, B. D., Kardon, G. & Tabin, C. J. Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation. Genes Dev. 26, 2088–2102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, C. et al. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity. Genes Dev. 26, 2103–2117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voronova, A. et al. Hedgehog signaling regulates MyoD expression and activity. J. Biol. Chem. 288, 4389–4404 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Elia, D., Madhala, D., Ardon, E., Reshef, R. & Halevy, O. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: involvement of MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta 1773, 1438–1446 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Straface, G. et al. Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J. Cell Mol. Med. 13, 2424–2435 (2009).

    Article  PubMed  Google Scholar 

  • Girardi, F. & Le Grand, F. Wnt signaling in skeletal muscle development and regeneration. Prog. Mol. Biol. Transl. Sci. 153, 157–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J. & Rando, T. A. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2, 50–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M. M. et al. Transiently active Wnt/beta-catenin signaling is not required but must be silenced for stem cell function during muscle regeneration. Stem Cell Rep. 3, 475–488 (2014).

    Article  CAS  Google Scholar 

  • Figeac, N. & Zammit, P. S. Coordinated action of Axin1 and Axin2 suppresses beta-catenin to regulate muscle stem cell function. Cell. Signal. 27, 1652–1665 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Rudolf, A. et al. beta-Catenin activation in muscle progenitor cells regulates tissue repair. Cell Rep. 15, 1277–1290 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Kyun, M. L. et al. Wnt3a stimulation promotes primary ciliogenesis through beta-catenin phosphorylation-induced reorganization of centriolar satellites. Cell Rep. 30, 1447.e5–1462.e5 (2020).

    Article  Google Scholar 

  • Lee, K. H. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J. 287, 5027–5038 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Borday, C. et al. Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation. Development 139, 3499–3509 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Nusse, R. & Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Jaafar Marican, N. H., Cruz-Migoni, S. B. & Borycki, A. G. Asymmetric distribution of primary cilia allocates satellite cells for self-renewal. Stem Cell Rep. 6, 798–805 (2016).

    Article  CAS  Google Scholar 

  • Venugopal, N. et al. The primary cilium dampens proliferative signaling and represses a G2/M transcriptional network in quiescent myoblasts. BMC Mol. Cell Biol. 21, 25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palla, A. R. et al. Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging. Nat. Commun. 13, 1439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Migoni, S. B. et al. A switch in cilia-mediated Hedgehog signaling controls muscle stem cell quiescence and cell cycle progression. Preprint at https://doi.org/10.1101/2019.12.21.884601 (2019).

  • Brun, C. E. et al. GLI3 regulates muscle stem cell entry into GAlert and self-renewal. Nat. Commun. 13, 3961 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunther, S. et al. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13, 590–601 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepper, C. & Fan, C. M. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48, 424–436 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosnakovski, D. et al. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26, 3194–3204 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sinha, S. & Chen, J. K. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol. 2, 29–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  • von Maltzahn, J., Jones, A. E., Parks, R. J. & Rudnicki, M. A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc. Natl Acad. Sci. USA 110, 16474–16479 (2013).

    Article  Google Scholar 

  • Zammit, P. S. et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J. Cell Biol. 166, 347–357 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, C. W. et al. The Hedgehog pathway effector smoothened exhibits signaling competency in the absence of ciliary accumulation. Chem. Biol. 21, 1680–1689 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, W., Asp, P., Canter, B. & Dynlacht, B. D. Primary cilia control hedgehog signaling during muscle differentiation and are deregulated in rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 111, 9151–9156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, A. M. & Davey, M. G. TALPID3 in Joubert syndrome and related ciliopathy disorders. Curr. Opin. Genet. Dev. 56, 41–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Stephen, L. A. et al. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). Elife 4, e08077 (2015).

  • Bodle, J. C. & Loboa, E. G. Concise Review: primary cilia: control centers for stem cell lineage specification and potential targets for cell-based therapies. Stem Cells 34, 1445–1454 (2016).

    Article  PubMed  Google Scholar 

  • Dell’Orso, S. et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 146, dev174177 (2019).

  • Anderson, C., Thorsteinsdottir, S. & Borycki, A. G. Sonic hedgehog-dependent synthesis of laminin alpha1 controls basement membrane assembly in the myotome. Development 136, 3495–3504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borycki, A. G. The myotomal basement membrane: insight into laminin-111 function and its control by Sonic hedgehog signaling. Cell Adh. Migr. 7, 72–81 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickering, J., Cunliffe, V. T., Van Eeden, F. & Borycki, A. G. Hedgehog signalling acts upstream of Laminin alpha1 transcription in the zebrafish paraxial mesoderm. Matrix Biol. 62, 58–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Machado, L. et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Rep. 21, 1982–1993 (2017).

    Article  CAS  PubMed  Google Scholar 

  • van Velthoven, C. T. J., de Morree, A., Egner, I. M., Brett, J. O. & Rando, T. A. Transcriptional profiling of quiescent muscle stem cells in vivo. Cell Rep. 21, 1994–2004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue, L., Wan, R., Luan, S., Zeng, W. & Cheung, T. H. Dek modulates global intron retention during muscle stem cells quiescence exit. Dev. Cell 53, 661.e6–676.e6 (2020).

    Article  Google Scholar 

  • van Velthoven, C. T. J. & Rando, T. A. Stem cell quiescence: dynamism, restraint, and cellular idling. Cell Stem Cell 24, 213–225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jones, A. E. et al. Wnt/beta-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skelet. Muscle 5, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Abou-Elhamd, A. et al. Klhl31 attenuates beta-catenin dependent Wnt signaling and regulates embryo myogenesis. Dev. Biol. 402, 61–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Abu-Elmagd, M. et al. Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis. Dev. Biol. 337, 211–219 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, M., Tanaka, M. & Munsterberg, A. Expression of (beta)-catenin in the developing chick myotome is regulated by myogenic signals. Development 127, 4105–4113 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh, S. et al. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125, 4155–4162 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Riobo, N. A., Lu, K., Ai, X., Haines, G. M. & Emerson, C. P. Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl Acad. Sci. USA 103, 4505–4510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCubrey, J. A. et al. Effects of mutations in Wnt/beta-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. Biochim. Biophys. Acta 1863, 2942–2976 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem. 278, 32227–32235 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Munoz Descalzo, S. & Martinez Arias, A. The structure of Wntch signalling and the resolution of transition states in development. Semin. Cell Dev. Biol. 23, 443–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Willem, M. et al. Specific ablation of the nidogen-binding site in the laminin gamma1 chain interferes with kidney and lung development. Development 129, 2711–2722 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).