A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation

  • Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendelson, A. & Frenette, P. S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20, 833–846 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Asada, N., Takeishi, S. & Frenette, P. S. Complexity of bone marrow hematopoietic stem cell niche. Int. J. Hematol. 106, 45–54 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Boulais, P. E. & Frenette, P. S. Making sense of hematopoietic stem cell niches. Blood 125, 2621–2629 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Eliasson, P. & Jönsson, J. I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell Physiol. 222, 17–22 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, J. et al. Deciphering the metabolic heterogeneity of hematopoietic stem cells with single-cell resolution. Cell Metab. 36, 209–221.e6 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura-Ishizu, A., Ito, K. & Suda, T. Hematopoietic stem cell metabolism during development and aging. Dev. Cell 54, 239–255 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ito, K. K. & Ito, K. K. Hematopoietic stem cell fate through metabolic control. Exp. Hematol. 64, 1–11 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Davila-Velderrain, J., Martinez-Garcia, J. C. & Alvarez-Buylla, E. R. Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. Front. Genet. 6, 1–14 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Moris, N., Pina, C. & Arias, A. M. Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet. 17, 693–703 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science (1979) 351, 1–22 (2016).


    Google Scholar
     

  • Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirschi, K. K., Nicoli, S. & Walsh, K. Hematopoiesis Lineage Tree Uprooted: Every Cell Is a Rainbow. Dev. Cell 41, 7–9 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Haas, S., Trumpp, A. & Milsom, M. D. Cell Stem Cell Review Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. https://doi.org/10.1016/j.stem.2018.04.003 (2018).

  • Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Guo, H., Cooper, S. & Friedman, A. D. In vivo deletion of the cebpa +37 kb enhancer markedly reduces cebpa mRNA in myeloid progenitors but not in non- hematopoietic tissues to impair granulopoiesis. PLoS ONE 11, 1–23 (2016).


    Google Scholar
     

  • Iwasaki, H. et al. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 19, 451–462 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarnegar, M. A. & Rothenberg, E. V. Ikaros represses and activates PU.1 cell-type-specifically through the multifunctional Sfpi1 URE and a myeloid specific enhancer. Oncogene 31, 4647–4654 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Unnisa, Z. et al. Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood 120, 4973–4981 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Whichard, Z. L., Sarkar, C. A., Kimmel, M. & Corey, S. J. Hematopoiesis and its disorders: a systems biology approach. Blood 115, 2339–2347 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Man, Y., Yao, X., Yang, T. & Wang, Y. Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front. Cell Dev. Biol. 9, 1–11 (2021).

    Article 

    Google Scholar
     

  • Hamey, F. K. et al. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc. Natl Acad. Sci. USA 114, 5822–5829 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Méndez, A. & Mendoza, L. A network model to describe the terminal differentiation of B cells. PLoS Comput. Biol. 12, 1–26 (2016).

    Article 

    Google Scholar
     

  • Ikonomi, N., Kühlwein, S. D., Schwab, J. D. & Kestler, H. A. Awakening the HSC: dynamic modeling of HSC maintenance unravels regulation of the TP53 pathway and quiescence. Front. Physiol. 11, 848 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Collombet, S. et al. Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc. Natl Acad. Sci. USA 114, 5792–5799 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Martinez-Sanchez, M. E., Mendoza, L., Villarreal, C. & Alvarez-Buylla, E. R. A minimal regulatory network of extrinsic and intrinsic factors recovers observed patterns of CD4+T cell differentiation and plasticity. PLoS Comput Biol. 11, e1004324 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Enciso, J., Mayani, H., Mendoza, L. & Pelayo, R. Modeling the pro-inflammatory tumor microenvironment in acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks. Front. Physiol. 7, 1–15 (2016).

    Article 

    Google Scholar
     

  • Krumsiek, J., Marr, C., Schroeder, T. & Theis, F. J. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS ONE 6, 1–10 (2011).

    Article 

    Google Scholar
     

  • Naldi, A. et al. Logical modeling and analysis of cellular regulatory networks with GINsim 3.0. Front. Physiol. https://doi.org/10.3389/fphys.2018.00646 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Thomas, R. Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73, 631–656 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naldi, A., Remy, E., Thieffry, D. & Chaouiya, C. Dynamically consistent reduction of logical regulatory graphs. Theor. Comput. Sci. 412, 2207–2218 (2011).

    Article 

    Google Scholar
     

  • Morikawa, T. & Takubo, K. Hypoxia regulates the hematopoietic stem cell niche. Pflug. Arch. 468, 13–22 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. Y. et al. p53 Regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Walsh, J. C. et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17, 665–676 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohneda, K. & Yamamoto, M. Roles of hematopoietic transcription factors GATA-1 and GATA-2 in the development of red blood cell lineage. Acta Haematol. 108, 237–245 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, S. T. et al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 114, 983–994 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Arinobu, Y. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1, 416–427 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, W. et al. GFI1 cooperates with IKZF1/IKAROS to activate gene expression in T-cell acute lymphoblastic leukemia. Mol. Cancer Res. 20, 501–514 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Du, P., Tang, F., Qiu, Y. & Dong, F. GFI1 is repressed by p53 and inhibits DNA damage-induced apoptosis. PLoS ONE 8, 1–11 (2013).

    Article 

    Google Scholar
     

  • Franco, C. B. et al. Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proc. Natl Acad. Sci. USA 103, 11993–11998 (2006).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Malinge, S. et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood 121, 2440–2451 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Huang, Z. et al. The stem cell factor/Kit signalling pathway regulates mitochondrial function and energy expenditure. Nat. Commun. 5, 1–10 (2014).

    Article 

    Google Scholar
     

  • Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lim, J. Y., Oh, M. A., Kim, W. H., Sohn, H. Y. & Park, S. I. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J. Cell Physiol. 227, 1081–1089 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406–1415 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wu, F., Chen, Z., Liu, J. & Hou, Y. The Akt–mTOR network at the interface of hematopoietic stem cell homeostasis. Exp. Hematol. 103, 15–23 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, P. & Qu, C. K. Metabolic plasticity and hematopoietic stem cell biology. Curr. Opin. Hematol. 20, 289–294 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wu, T. et al. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. https://doi.org/10.3389/fphys.2019.01638 (2020).

  • Negoro, S. et al. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104, 979–981 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, G. & Albert, R. Modeling of Molecular Networks. in 35–62 https://doi.org/10.1007/978-3-030-22583-4_2 (2019).

  • Álvarez-Buylla, E. R., Martínez-García, J. C., Dávila-Velderrain, J., Domínguez-Hüttinger, E. & Martínez-Sánchez, M. E. Modeling Procedures. in 35–134 https://doi.org/10.1007/978-3-319-89354-9_2 (2018).

  • Halvarsson, C., Eliasson, P. & Jönsson, J. I. Pyruvate dehydrogenase kinase 1 is essential for transplantable mouse bone marrow hematopoietic stem cell and progenitor function. PLoS ONE https://doi.org/10.1371/journal.pone.0171714 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, X., Chu, Y., Wang, W. & Yuan, W. mTORC signaling in hematopoiesis. Int. J. Hematol. 103, 510–518 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Grass, J. A. et al. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol. Cell Biol. 26, 7056–7067 (2006).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zeng, H., Yücel, R., Kosan, C., Klein-Hitpass, L. & Möröy, T. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J. 23, 4116–4125 (2004).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Overexpression of GATA2 enhances development and maintenance of human embryonic stem cell-derived hematopoietic stem cell-like progenitors. Stem Cell Rep. 13, 31–47 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kocabas, F. et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120, 4963–4972 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li, F. et al. Characterization of gene regulatory networks underlying key properties in human hematopoietic stem cell ontogeny. Cell Regener. 13, 9 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bloom, M. et al. ETV6 represses inflammatory response genes and regulates HSPC function during stress hematopoiesis in mice. Blood Adv. 7, 5608–5623 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lu, Y. C. et al. The molecular signature of megakaryocyte-erythroid progenitors reveals a role for the cell cycle in fate specification. Cell Rep. 25, 2083–2093.e4 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yáñez, A. et al. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47, 890–902.e4 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lu, M., Ammar, D., Ives, H., Albrecht, F. & Gluck, S. L. Physical interaction between aldolase and vacuolar H + -ATPase is essential for the assembly and activity of the proton pump. J. Biol. Chem. 282, 24495–24503 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Yang, Z. & Chen, Y. A novel oxidative phosphorylation-associated gene signature for prognosis prediction in patients with hepatocellular carcinoma. Dis. Markers 2022, 1–20 (2022).


    Google Scholar
     

  • Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10, 252–263 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francis, O. L., Payne, J. L., Su, R.-J. & Payne, K. J. Regulator of myeloid differentiation and function: the secret life of Ikaros. World J. Biol. Chem. 2, 119–125 (2011).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Stehling-Sun, S., Dade, J., Nutt, S. L., DeKoter, R. P. & Camargo, F. D. Regulation of lymphoid versus myeloid fate ‘choice’ by the transcription factor Mef2c. Nat. Immunol. 10, 289–296 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, Y.-K. & Cho, K.-H. Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24, 987–994 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Félix, M.-A. & Barkoulas, M. Pervasive robustness in biological systems. Nat. Rev. Genet. 16, 483–496 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Whitacre, J. M. Biological robustness: paradigms, mechanisms, and systems principles. Front. Genet 3, 67 (2012).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schwab, J. D., Kühlwein, S. D., Ikonomi, N., Kühl, M. & Kestler, H. A. Concepts in Boolean network modeling: what do they all mean? Comput. Struct. Biotechnol. J. 18, 571–582 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ortiz-Gutiérrez, E. et al. A dynamic gene regulatory network model that recovers the cyclic behavior of Arabidopsis thaliana cell cycle. PLoS Comput. Biol. 11, 1–28 (2015).

    Article 

    Google Scholar
     

  • Davidich, M. I. & Bornholdt, S. Boolean network model predicts knockout mutant phenotypes of fission yeast. PLoS One 8, e71786 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Miao, W. et al. Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice. Mol. Ther. 21, 423–432 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Antioxidant small molecule compound chrysin promotes the self-renewal of hematopoietic stem cells. Front. Pharm. 11, 399 (2020).

    Article 

    Google Scholar
     

  • Yalcin, S. et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J. Biol. Chem. 283, 25692–25705 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nat. Commun. 7, 12376 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vukovic, M. et al. Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood 127, 2841–2846 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poscablo, D. M., Worthington, A. K., Smith-Berdan, S. & Forsberg, E. C. Megakaryocyte progenitor cell function is enhanced upon aging despite the functional decline of aged hematopoietic stem cells. Stem Cell Rep. 16, 1598–1613 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Gómez, M. L., Azpeitia, E. & Álvarez-Buylla, E. R. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana. PLoS Comput. Biol. 13, e1005488 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Stoll, G. et al. MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics 33, 2226–2228 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoll, G., Viara, E., Barillot, E. & Calzone, L. Continuous time boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst. Biol. 6, 116 (2012).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Álvarez-Buylla, E. R. et al. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE 3, 1–13 (2008).

    Article 

    Google Scholar
     

  • Bensussen, A., Torres-Magallanes, J. A. & Roces de Álvarez-Buylla, E. Molecular tracking of insulin resistance and inflammation development on visceral adipose tissue. Front. Immunol. 14, 1–17 (2023).

    Article 

    Google Scholar
     

  • Allman, D. & Miller, J. P. Common lymphoid progenitors, early B-lineage precursors, and IL-7: characterizing the trophic and instructive signals underlying early B cell development. Immunol. Res. 27, 131–140 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Säwen, P. et al. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. Elife 7, e41258 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698–702 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gao, S., Zhang, Y. & Liu, F. Revisiting the lineage contribution of hematopoietic stem and progenitor cells. Development 150, dev201609 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, G. et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 13, 492–505 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S., Guo, Y. P., May, G. & Enver, T. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiesner, K., Teles, J., Hartnor, M. & Peterson, C. Haematopoietic stem cells: entropic landscapes of differentiation. Interface Focus 8, 20180040 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dussiau, C. et al. Hematopoietic differentiation is characterized by a transient peak of entropy at a single-cell level. BMC Biol. 20, 1–15 (2022).

    Article 

    Google Scholar
     

  • Torres-Padilla, M.-E. & Chambers, I. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141, 2173–2181 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, K. S., Funnell, A. P. W., Pearson, R. C. M. & Crossley, M. PU.1 and haematopoietic cell fate: dosage matters. Int J. Cell Biol. 2011, 808524 (2011).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mostafa, S. S., Miller, W. M. & Terry Papoutsakis, E. Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. Br. J. Haematol. 111, 879–889 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliades, A., Matsuura, S. & Ravid, K. Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes. J. Cell Physiol. 227, 3355–3362 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ikejiri, A. et al. Dynamic regulation of Th17 differentiation by oxygen concentrations. Int. Immunol. 24, 137–146 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kurnit, D. M., Matthysse, S., Papayannopoulou, T. & Stamatoyannopoulos, G. Stochastic branching model for hemopoietic progenitor cell differentiation. J. Cell Physiol. 123, 55–63 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abkowitz, J. L., Catlin, S. N. & Guttorp, P. Evidence that hematopoiesis may be a stochastic process in vivo. Nat. Med. 2, 190–197 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa, M. Stochastic model revisited. Int. J. Hematol. 69, 2–5 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Crisan, M. & Dzierzak, E. The many faces of hematopoietic stem cell heterogeneity. Development 143, 4571–4581 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grinenko, T. et al. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat. Commun. 9, 1–10 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Roggiani, M. & Goulian, M. Oxygen-dependent cell-to-cell variability in the output of the Escherichia coli Tor phosphorelay. J. Bacteriol. 197, 1976–1987 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Shyh-Chang, N. & Ng, H. H. The metabolic programming of stem cells. Genes Dev. 31, 336–346 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rouillard, A. D. et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016, baw100 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S. Reprogramming cell fates: reconciling rarity with robustness. BioEssays 31, 546–560 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramírez, C. & Mendoza, L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 34, 1174–1182 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fauré, A., Naldi, A., Chaouiya, C. & Thieffry, D. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22, e124–e131 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Garg, A., Di Cara, A., Xenarios, I., Mendoza, L. & De Micheli, G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24, 1917–1925 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Raj, A. & van Oudenaarden, A. Nature, NUrture, Or Chance: Stochastic Gene Expression and Its Consequences. Cell 135, 216–226 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ransac, S., Arnarez, C. & Mazat, J.-P. The flitting of electrons in complex I: a stochastic approach. Biochim. Biophys. Acta 1797, 641–648 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, C. A. & Beard, D. A. The effects of reversibility and noise on stochastic phosphorylation cycles and cascades. Biophys. J. 95, 2183–2192 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Müssel, C., Hopfensitz, M. & Kestler, H. A. BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26, 1378–1380 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 1–16 (2011).

    Article 

    Google Scholar
     

  • De Kok, J. B. et al. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab. Investig. 85, 154–159 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Martinez-Sanchez, M. E., Huerta, L., Alvarez-Buylla, E. R. & Luján, C. V. Role of cytokine combinations on CD4+T cell differentiation, partial polarization, and plasticity: continuous network modeling approach. Front. Physiol. 9, 1–14 (2018).

    Article 

    Google Scholar
     

  • Sánchez-Corrales, Y. E., Álvarez-Buylla, E. R. & Mendoza, L. The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. J. Theor. Biol. 264, 971–983 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tijssen, M. R. et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev. Cell 20, 597–609 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Subnuclear targeting of Runx1 Is required for synergistic activation of the myeloid specific M‐CSF receptor promoter by PU.1. J. Cell Biochem. 96, 795–809 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nottingham, W. T. et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110, 4188–4197 (2007).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, M. et al. Transcriptional auto-regulation of RUNX1 P1 promoter. PLoS ONE 11, 149119 (2016).

    Article 

    Google Scholar
     

  • Zhou, J., Zhang, X., Wang, Y. & Guan, Y. PU.1 affects proliferation of the human acute myeloid leukemia U937 cell line by directly regulating MEIS1. Oncol. Lett. 10, 1912–1918 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Loke, J. et al. RUNX1-ETO and RUNX1-EVI1 differentially reprogram the chromatin landscape in t(8;21) and t(3;21) AML. Cell Rep. 19, 1654–1668 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, Q. F. et al. Regulation of MEIS1 by distal enhancer elements in acute leukemia. Leukemia 28, 138–146 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury, A. H. et al. Differential transcriptional regulation of meis1 by Gfi1b and its co-factors LSD1 and CoREST. PLoS ONE 8, e53666 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia- inducible factor 1α. Genes Dev. 14, 34–44 (2000).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bakker, W. J., Harris, I. S. & Mak, T. W. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol. Cell 28, 941–953 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, L. et al. Modeling the genetic regulation of cancer metabolism: Interplay between glycolysis and oxidative phosphorylation. Cancer Res. 77, 1564–1574 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kaewpila, S., Venkataraman, S., Buettner, G. R. & Oberley, L. W. Manganese superoxide dismutase modulates hypoxia-inducible factor-1α induction via superoxide. Cancer Res. 68, 2781–2788 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Li, X. N. et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes 58, 2246–2257 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Renault, V. M. et al. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 30, 3207–3221 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Investig. 119, 3573–3585 (2009).

    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wölfler, A. et al. Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors. Blood 116, 4116–4125 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, P., Guan, D., Zhang, X. P., Liu, F. & Wang, W. Modeling the regulation of p53 activation by HIF-1 upon hypoxia. FEBS Lett. 593, 2596–2611 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rueda-Rincon, N. et al. p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget 6, 21240–21254 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Azad, P. et al. ARID1B, a molecular suppressor of erythropoiesis, is essential for the prevention of Monge’s disease. Exp. Mol. Med. 54, 1–11 (2022).

    Article 

    Google Scholar
     

  • Tschan, M. P. et al. PU.1 binding to the p53 family of tumor suppressors impairs their transcriptional activity. Oncogene 27, 3489–3493 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moriguchi, T. & Yamamoto, M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int. J. Hematol. 100, 417–424 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moignard, V. et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat. Cell Biol. 15, 363–372 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fischer, M., Schwarz, R., Riege, K., DeCaprio, J. A. & Hoffmann, S. TargetGeneReg 2.0: a comprehensive web-atlas for p53, p63, and cell cycle-dependent gene regulation. NAR Cancer 4, zcac009 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhao, W., Kitidis, C., Fleming, M. D., Lodish, H. F. & Ghaffari, S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107, 907–915 (2006).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yokomizo, T. et al. Runx1 is involved in primitive erythropoiesis in the mouse. Blood 111, 4075–4080 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Z. et al. RUNX1 regulates corepressor interactions of PU.1. Blood 117, 6498–6508 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Burda, P. et al. GATA-1 inhibits PU.1 gene via DNA and histone H3K9 methylation of its distal enhancer in erythroleukemia. PLoS ONE 11, 1–18 (2016).

    Article 

    Google Scholar
     

  • Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl Acad. Sci. USA 96, 8705–8710 (1999).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dahl, R., Iyer, S. R., Owens, K. S., Cuylear, D. D. & Simon, M. C. The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. J. Biol. Chem. 282, 6473–6483 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, H., Ma, O., Speck, N. A. & Friedman, A. D. Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis. Blood 119, 4408–4418 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Burda, P. et al. PU.1 Activation Relieves GATA-1-Mediated Repression of Cebpa and Cbfb during Leukemia Differentiation. Mol. Cancer Res. 7, 1693–1703 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yoshida, T. et al. Transcriptional regulation of the Ikzf1 locus. Blood 122, 3149–3159 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhou, N. et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia 33, 2001–2006 (2019).

    Article 

    Google Scholar
     

  • Chan, L. N. & Müschen, M. B-cell identity as a metabolic barrier against malignant transformation. Exp. Hematol. 53, 1–6 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lidonnici, M. R. et al. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBPα and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res. 70, 7949–7959 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Odaira, K. et al. Functional inhibition of MEF2 by C/EBP is a possible mechanism of leukemia development by CEBP-IGH fusion gene. Cancer Sci. 114, 781–792 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dan, H. C. et al. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem. 289, 25227–25240 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc. Natl Acad. Sci. USA 111, E435–E444 (2014).

    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Feng, Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb. Perspect. Biol. 2, 1–10 (2010).

    Article 

    Google Scholar
     

  • Kovacic, S. et al. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J. Biol. Chem. 278, 39422–39427 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. & Wang, J. Uncovering the underlying mechanisms of cancer metabolism through the landscapes and probability flux quantifications. iScience 23, 1–21 (2020).


    Google Scholar
     

  • Zhelev, Z. et al. A ‘weird’ mitochondrial fatty acid oxidation as a metabolic ‘secret’ of cancer. Oxid. Med. Cell Longev. 2022, 1–38 (2022).

    Article 

    Google Scholar
     

  • Wang, X., McCullough, K. D., Franke, T. F. & Holbrook, N. J. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem. 275, 14624–14631 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasimian, A., Farzaneh, P., Tamanoi, F. & Bathaie, S. Z. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: the role of FOXO3a, PTEN and AKT signaling. Biochem. Pharm. 177, 113999 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afonso, V., Champy, R., Mitrovic, D., Collin, P. & Lomri, A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Jt. Bone Spine 74, 324–329 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Trombetti, S. et al. Exploring the leukemogenic potential of gata-1s, the shorter isoform of gata-1: novel insights into mechanisms hampering respiratory chain complex ii activity and limiting oxidative phosphorylation efficiency. Antioxidants 10, 1–22 (2021).

    Article 

    Google Scholar
     

  • Hervouet, E. et al. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis 29, 1528–1537 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J. et al. ROS production and mitochondrial dysfunction driven by PU.1-regulated NOX4-p22phox activation in Aβ-induced retinal pigment epithelial cell injury. Theranostics 10, 11637–11655 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L. A. & Seliger, B. Hydrogen peroxide—production, fate and role in redox signaling of tumor cells. Cell Commun. Signal. 13, 1–19 (2015).

    Article 

    Google Scholar
     

  • Masschelin, P. M., Cox, A. R., Chernis, N. & Hartig, S. M. The impact of oxidative stress on adipose tissue energy balance. Front Physiol. 10, 1638 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Case, A. J., Madsen, J. M., Motto, D. G., Meyerholz, D. K. & Domann, F. E. Manganese superoxide dismutase depletion in murine hematopoietic stem cells perturbs iron homeostasis, globin switching, and epigenetic control in erythrocyte precursorcells. Free Radic. Biol. Med. 56, 17–27 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dejean, A. S., Hedrick, S. M. & Kerdiles, Y. M. Highly specialized role of forkhead Box O transcription factors in the immune system. Antioxid. Redox Signal. 14, 663–674 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Marinkovic, D. et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J. Clin. Investig. 117, 2133–2144 (2007).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Morita, M. et al. MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaik, Z. P., Fifer, E. K. & Nowak, G. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury. Am. J. Physiol. Ren. Physiol. 294, F423–F432 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Mehta, A. et al. The MicroRNA-132 and MicroRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity 42, 1021–1032 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Quintana-Bustamante, O. et al. Overexpression of wild-type or mutants forms of CEBPA alter normal human hematopoiesis. Leukemia 26, 1537–1546 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Suh, H. C. et al. C/EBPα determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 107, 4308–4316 (2006).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hönes, J. M. et al. Enforced GFI1 expression impedes human and murine leukemic cell growth. Sci. Rep. 7, 1–13 (2017).

    Article 

    Google Scholar
     

  • McIvor, Z. et al. Transient expression of PU.1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation. Exp. Hematol. 31, 39–47 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed, N. et al. Blood stem cell PU.1 upregulation is a consequence of differentiation without fast autoregulation. J. Exp. Med. 219, e20202490 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gutiérrez, L., Caballero, N., Fernández‐Calleja, L., Karkoulia, E. & Strouboulis, J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 72, 89–105 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tipping, A. J. et al. High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113, 2661–2672 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nandakumar, S. K. et al. Low-level GATA2 overexpression promotes myeloid progenitor self-renewal and blocks lymphoid differentiation in mice. Exp. Hematol. 43, 565–577.e10 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, M. et al. Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation. Blood 120, 335–346 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tsuzuki, S. et al. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med. 4, e172 (2007).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kuvardina, O. N. et al. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood 125, 3570–3579 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schüler, A. et al. The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate. Blood 111, 4532–4541 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Gan, B. et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl Acad. Sci. USA 105, 19384–19389 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood 125, 1562–1565 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliasson, P. et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term–reconstituting hematopoietic stem cells during in vitro culture. Exp. Hematol. 38, 301–310.e2 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mantel, C. R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553–1565 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rimmele, P. et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 16, 1164–1176 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ye, M. et al. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat. Cell Biol. 15, 385–394 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hock, H. et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18, 109–120 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nutt, S. L., Metcalf, D., D’Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201, 221–231 (2005).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gutiérrez, L. et al. Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 111, 4375–4385 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Shimizu, R., Takahashi, S., Ohneda, K., Engel, J. D. & Yamamoto, M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 20, 5250–5260 (2001).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Menendez-Gonzalez, J. B. et al. Gata2 as a crucial regulator of stem cells in adult hematopoiesis and acute myeloid leukemia. Stem Cell Rep. 13, 291–306 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Abdelfattah, A. et al. Gata2 haploinsufficiency promotes proliferation and functional decline of hematopoietic stem cells with myeloid bias during aging. Blood Adv. 5, 4285–4290 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp. Hematol. 36, 1236–1243 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Miller, M. E., Rosten, P., Lemieux, M. E., Lai, C. & Humphries, R. K. Meis1 is required for adult mouse erythropoiesis, megakaryopoiesis and hematopoietic stem cell expansion. PLoS ONE 11, e0151584 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ariki, R. et al. Homeodomain transcription factor Meis1 is a critical regulator of adult bone marrow hematopoiesis. PLoS ONE 9, 1–11 (2014).

    Article 

    Google Scholar
     

  • Growney, J. D. et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106, 494–504 (2005).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ichikawa, M. et al. AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J. Immunol. 180, 4402–4408 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agnihotri, P., Robertson, N. M., Umetsu, S. E., Arakcheeva, K. & Winandy, S. Lack of Ikaros cripples expression of Foxo1 and its targets in naive T cells. Immunology 152, 494–506 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yoshida, T., Yao-Ming Ng, S., Zuniga-Pflucker, J. C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, F. et al. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis. Haematologica 98, 1353–1358 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fan, C. et al. Adaptive responses to mTOR gene targeting in hematopoietic stem cells reveal a proliferative mechanism evasive to mTOR inhibition. Proc. Natl Acad. Sci. USA 118, e2020102118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Juntilla, M. M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030–4038 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gupta, R., Karpatkin, S. & Basch, R. S. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood 107, 1837–1846 (2006).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. A novel redox regulator, MnTnBuOE-2-PyP5+, enhances normal hematopoietic stem/progenitor cell function. Redox Biol. 12, 129–138 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mohanty, J. G., Nagababu, E., Friedman, J. S. & Rifkind, J. M. SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation. Exp. Hematol. 41, 316–321 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, F. M., Xu, X., von Löhneysen, K., Gilmartin, T. J. & Friedman, J. S. SOD2 deficient erythroid cells up-regulate transferrin receptor and down-regulate mitochondrial biogenesis and metabolism. PLoS One 6, e16894 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, W.-M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hermitte, F., Brunet de la Grange, P., Belloc, F., Praloran, V. & Ivanovic, Z. Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 24, 65–73 (2006).

    Article 
    PubMed 

    Google Scholar