Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).
Mendelson, A. & Frenette, P. S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20, 833–846 (2014).
Asada, N., Takeishi, S. & Frenette, P. S. Complexity of bone marrow hematopoietic stem cell niche. Int. J. Hematol. 106, 45–54 (2017).
Boulais, P. E. & Frenette, P. S. Making sense of hematopoietic stem cell niches. Blood 125, 2621–2629 (2015).
Eliasson, P. & Jönsson, J. I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell Physiol. 222, 17–22 (2010).
Cao, J. et al. Deciphering the metabolic heterogeneity of hematopoietic stem cells with single-cell resolution. Cell Metab. 36, 209–221.e6 (2024).
Nakamura-Ishizu, A., Ito, K. & Suda, T. Hematopoietic stem cell metabolism during development and aging. Dev. Cell 54, 239–255 (2020).
Ito, K. K. & Ito, K. K. Hematopoietic stem cell fate through metabolic control. Exp. Hematol. 64, 1–11 (2018).
Davila-Velderrain, J., Martinez-Garcia, J. C. & Alvarez-Buylla, E. R. Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. Front. Genet. 6, 1–14 (2015).
Moris, N., Pina, C. & Arias, A. M. Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet. 17, 693–703 (2016).
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).
Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).
Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).
Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science (1979) 351, 1–22 (2016).
Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018).
Hirschi, K. K., Nicoli, S. & Walsh, K. Hematopoiesis Lineage Tree Uprooted: Every Cell Is a Rainbow. Dev. Cell 41, 7–9 (2017).
Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).
Haas, S., Trumpp, A. & Milsom, M. D. Cell Stem Cell Review Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. https://doi.org/10.1016/j.stem.2018.04.003 (2018).
Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).
Guo, H., Cooper, S. & Friedman, A. D. In vivo deletion of the cebpa +37 kb enhancer markedly reduces cebpa mRNA in myeloid progenitors but not in non- hematopoietic tissues to impair granulopoiesis. PLoS ONE 11, 1–23 (2016).
Iwasaki, H. et al. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 19, 451–462 (2003).
Zarnegar, M. A. & Rothenberg, E. V. Ikaros represses and activates PU.1 cell-type-specifically through the multifunctional Sfpi1 URE and a myeloid specific enhancer. Oncogene 31, 4647–4654 (2012).
Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979 (2012).
Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).
Unnisa, Z. et al. Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood 120, 4973–4981 (2012).
Whichard, Z. L., Sarkar, C. A., Kimmel, M. & Corey, S. J. Hematopoiesis and its disorders: a systems biology approach. Blood 115, 2339–2347 (2010).
Man, Y., Yao, X., Yang, T. & Wang, Y. Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front. Cell Dev. Biol. 9, 1–11 (2021).
Hamey, F. K. et al. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc. Natl Acad. Sci. USA 114, 5822–5829 (2017).
Méndez, A. & Mendoza, L. A network model to describe the terminal differentiation of B cells. PLoS Comput. Biol. 12, 1–26 (2016).
Ikonomi, N., Kühlwein, S. D., Schwab, J. D. & Kestler, H. A. Awakening the HSC: dynamic modeling of HSC maintenance unravels regulation of the TP53 pathway and quiescence. Front. Physiol. 11, 848 (2020).
Collombet, S. et al. Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc. Natl Acad. Sci. USA 114, 5792–5799 (2017).
Martinez-Sanchez, M. E., Mendoza, L., Villarreal, C. & Alvarez-Buylla, E. R. A minimal regulatory network of extrinsic and intrinsic factors recovers observed patterns of CD4+T cell differentiation and plasticity. PLoS Comput Biol. 11, e1004324 (2015).
Enciso, J., Mayani, H., Mendoza, L. & Pelayo, R. Modeling the pro-inflammatory tumor microenvironment in acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks. Front. Physiol. 7, 1–15 (2016).
Krumsiek, J., Marr, C., Schroeder, T. & Theis, F. J. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS ONE 6, 1–10 (2011).
Naldi, A. et al. Logical modeling and analysis of cellular regulatory networks with GINsim 3.0. Front. Physiol. https://doi.org/10.3389/fphys.2018.00646 (2018).
Thomas, R. Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73, 631–656 (1978).
Naldi, A., Remy, E., Thieffry, D. & Chaouiya, C. Dynamically consistent reduction of logical regulatory graphs. Theor. Comput. Sci. 412, 2207–2218 (2011).
Morikawa, T. & Takubo, K. Hypoxia regulates the hematopoietic stem cell niche. Pflug. Arch. 468, 13–22 (2016).
Liu, Y. Y. et al. p53 Regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).
Walsh, J. C. et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17, 665–676 (2002).
Ohneda, K. & Yamamoto, M. Roles of hematopoietic transcription factors GATA-1 and GATA-2 in the development of red blood cell lineage. Acta Haematol. 108, 237–245 (2002).
Chou, S. T. et al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 114, 983–994 (2009).
Arinobu, Y. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1, 416–427 (2007).
Sun, W. et al. GFI1 cooperates with IKZF1/IKAROS to activate gene expression in T-cell acute lymphoblastic leukemia. Mol. Cancer Res. 20, 501–514 (2022).
Du, P., Tang, F., Qiu, Y. & Dong, F. GFI1 is repressed by p53 and inhibits DNA damage-induced apoptosis. PLoS ONE 8, 1–11 (2013).
Franco, C. B. et al. Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proc. Natl Acad. Sci. USA 103, 11993–11998 (2006).
Malinge, S. et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood 121, 2440–2451 (2013).
Huang, Z. et al. The stem cell factor/Kit signalling pathway regulates mitochondrial function and energy expenditure. Nat. Commun. 5, 1–10 (2014).
Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).
Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013).
Lim, J. Y., Oh, M. A., Kim, W. H., Sohn, H. Y. & Park, S. I. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J. Cell Physiol. 227, 1081–1089 (2012).
Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406–1415 (2010).
Wu, F., Chen, Z., Liu, J. & Hou, Y. The Akt–mTOR network at the interface of hematopoietic stem cell homeostasis. Exp. Hematol. 103, 15–23 (2021).
Hsu, P. & Qu, C. K. Metabolic plasticity and hematopoietic stem cell biology. Curr. Opin. Hematol. 20, 289–294 (2013).
Wu, T. et al. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. https://doi.org/10.3389/fphys.2019.01638 (2020).
Negoro, S. et al. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104, 979–981 (2001).
Yang, G. & Albert, R. Modeling of Molecular Networks. in 35–62 https://doi.org/10.1007/978-3-030-22583-4_2 (2019).
Álvarez-Buylla, E. R., Martínez-García, J. C., Dávila-Velderrain, J., Domínguez-Hüttinger, E. & Martínez-Sánchez, M. E. Modeling Procedures. in 35–134 https://doi.org/10.1007/978-3-319-89354-9_2 (2018).
Halvarsson, C., Eliasson, P. & Jönsson, J. I. Pyruvate dehydrogenase kinase 1 is essential for transplantable mouse bone marrow hematopoietic stem cell and progenitor function. PLoS ONE https://doi.org/10.1371/journal.pone.0171714 (2017).
Wang, X., Chu, Y., Wang, W. & Yuan, W. mTORC signaling in hematopoiesis. Int. J. Hematol. 103, 510–518 (2016).
Grass, J. A. et al. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol. Cell Biol. 26, 7056–7067 (2006).
Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005).
Zeng, H., Yücel, R., Kosan, C., Klein-Hitpass, L. & Möröy, T. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J. 23, 4116–4125 (2004).
Zhou, Y. et al. Overexpression of GATA2 enhances development and maintenance of human embryonic stem cell-derived hematopoietic stem cell-like progenitors. Stem Cell Rep. 13, 31–47 (2019).
Kocabas, F. et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120, 4963–4972 (2012).
Li, F. et al. Characterization of gene regulatory networks underlying key properties in human hematopoietic stem cell ontogeny. Cell Regener. 13, 9 (2024).
Bloom, M. et al. ETV6 represses inflammatory response genes and regulates HSPC function during stress hematopoiesis in mice. Blood Adv. 7, 5608–5623 (2023).
Lu, Y. C. et al. The molecular signature of megakaryocyte-erythroid progenitors reveals a role for the cell cycle in fate specification. Cell Rep. 25, 2083–2093.e4 (2018).
Yáñez, A. et al. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47, 890–902.e4 (2017).
Lu, M., Ammar, D., Ives, H., Albrecht, F. & Gluck, S. L. Physical interaction between aldolase and vacuolar H + -ATPase is essential for the assembly and activity of the proton pump. J. Biol. Chem. 282, 24495–24503 (2007).
Chen, W., Yang, Z. & Chen, Y. A novel oxidative phosphorylation-associated gene signature for prognosis prediction in patients with hepatocellular carcinoma. Dis. Markers 2022, 1–20 (2022).
Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10, 252–263 (2009).
Francis, O. L., Payne, J. L., Su, R.-J. & Payne, K. J. Regulator of myeloid differentiation and function: the secret life of Ikaros. World J. Biol. Chem. 2, 119–125 (2011).
Stehling-Sun, S., Dade, J., Nutt, S. L., DeKoter, R. P. & Camargo, F. D. Regulation of lymphoid versus myeloid fate ‘choice’ by the transcription factor Mef2c. Nat. Immunol. 10, 289–296 (2009).
Kwon, Y.-K. & Cho, K.-H. Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24, 987–994 (2008).
Félix, M.-A. & Barkoulas, M. Pervasive robustness in biological systems. Nat. Rev. Genet. 16, 483–496 (2015).
Whitacre, J. M. Biological robustness: paradigms, mechanisms, and systems principles. Front. Genet 3, 67 (2012).
Schwab, J. D., Kühlwein, S. D., Ikonomi, N., Kühl, M. & Kestler, H. A. Concepts in Boolean network modeling: what do they all mean? Comput. Struct. Biotechnol. J. 18, 571–582 (2020).
Ortiz-Gutiérrez, E. et al. A dynamic gene regulatory network model that recovers the cyclic behavior of Arabidopsis thaliana cell cycle. PLoS Comput. Biol. 11, 1–28 (2015).
Davidich, M. I. & Bornholdt, S. Boolean network model predicts knockout mutant phenotypes of fission yeast. PLoS One 8, e71786 (2013).
Miao, W. et al. Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice. Mol. Ther. 21, 423–432 (2013).
Li, Y. et al. Antioxidant small molecule compound chrysin promotes the self-renewal of hematopoietic stem cells. Front. Pharm. 11, 399 (2020).
Yalcin, S. et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J. Biol. Chem. 283, 25692–25705 (2008).
Wang, W. et al. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nat. Commun. 7, 12376 (2016).
Vukovic, M. et al. Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood 127, 2841–2846 (2016).
Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).
Poscablo, D. M., Worthington, A. K., Smith-Berdan, S. & Forsberg, E. C. Megakaryocyte progenitor cell function is enhanced upon aging despite the functional decline of aged hematopoietic stem cells. Stem Cell Rep. 16, 1598–1613 (2021).
Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).
García-Gómez, M. L., Azpeitia, E. & Álvarez-Buylla, E. R. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana. PLoS Comput. Biol. 13, e1005488 (2017).
Stoll, G. et al. MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics 33, 2226–2228 (2017).
Stoll, G., Viara, E., Barillot, E. & Calzone, L. Continuous time boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst. Biol. 6, 116 (2012).
Álvarez-Buylla, E. R. et al. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE 3, 1–13 (2008).
Bensussen, A., Torres-Magallanes, J. A. & Roces de Álvarez-Buylla, E. Molecular tracking of insulin resistance and inflammation development on visceral adipose tissue. Front. Immunol. 14, 1–17 (2023).
Allman, D. & Miller, J. P. Common lymphoid progenitors, early B-lineage precursors, and IL-7: characterizing the trophic and instructive signals underlying early B cell development. Immunol. Res. 27, 131–140 (2003).
Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).
Säwen, P. et al. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. Elife 7, e41258 (2018).
Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698–702 (2016).
Gao, S., Zhang, Y. & Liu, F. Revisiting the lineage contribution of hematopoietic stem and progenitor cells. Development 150, dev201609 (2023).
Guo, G. et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 13, 492–505 (2013).
Huang, S., Guo, Y. P., May, G. & Enver, T. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007).
Wiesner, K., Teles, J., Hartnor, M. & Peterson, C. Haematopoietic stem cells: entropic landscapes of differentiation. Interface Focus 8, 20180040 (2018).
Dussiau, C. et al. Hematopoietic differentiation is characterized by a transient peak of entropy at a single-cell level. BMC Biol. 20, 1–15 (2022).
Torres-Padilla, M.-E. & Chambers, I. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141, 2173–2181 (2014).
Mak, K. S., Funnell, A. P. W., Pearson, R. C. M. & Crossley, M. PU.1 and haematopoietic cell fate: dosage matters. Int J. Cell Biol. 2011, 808524 (2011).
Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).
Mostafa, S. S., Miller, W. M. & Terry Papoutsakis, E. Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. Br. J. Haematol. 111, 879–889 (2000).
Eliades, A., Matsuura, S. & Ravid, K. Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes. J. Cell Physiol. 227, 3355–3362 (2012).
Ikejiri, A. et al. Dynamic regulation of Th17 differentiation by oxygen concentrations. Int. Immunol. 24, 137–146 (2012).
Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).
Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).
Kurnit, D. M., Matthysse, S., Papayannopoulou, T. & Stamatoyannopoulos, G. Stochastic branching model for hemopoietic progenitor cell differentiation. J. Cell Physiol. 123, 55–63 (1985).
Abkowitz, J. L., Catlin, S. N. & Guttorp, P. Evidence that hematopoiesis may be a stochastic process in vivo. Nat. Med. 2, 190–197 (1996).
Ogawa, M. Stochastic model revisited. Int. J. Hematol. 69, 2–5 (1999).
Crisan, M. & Dzierzak, E. The many faces of hematopoietic stem cell heterogeneity. Development 143, 4571–4581 (2016).
Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).
Grinenko, T. et al. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat. Commun. 9, 1–10 (2018).
Roggiani, M. & Goulian, M. Oxygen-dependent cell-to-cell variability in the output of the Escherichia coli Tor phosphorelay. J. Bacteriol. 197, 1976–1987 (2015).
Shyh-Chang, N. & Ng, H. H. The metabolic programming of stem cells. Genes Dev. 31, 336–346 (2017).
Rouillard, A. D. et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016, baw100 (2016).
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).
Huang, S. Reprogramming cell fates: reconciling rarity with robustness. BioEssays 31, 546–560 (2009).
Ramírez, C. & Mendoza, L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 34, 1174–1182 (2018).
Fauré, A., Naldi, A., Chaouiya, C. & Thieffry, D. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22, e124–e131 (2006).
Garg, A., Di Cara, A., Xenarios, I., Mendoza, L. & De Micheli, G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24, 1917–1925 (2008).
Raj, A. & van Oudenaarden, A. Nature, NUrture, Or Chance: Stochastic Gene Expression and Its Consequences. Cell 135, 216–226 (2008).
Ransac, S., Arnarez, C. & Mazat, J.-P. The flitting of electrons in complex I: a stochastic approach. Biochim. Biophys. Acta 1797, 641–648 (2010).
Miller, C. A. & Beard, D. A. The effects of reversibility and noise on stochastic phosphorylation cycles and cascades. Biophys. J. 95, 2183–2192 (2008).
Müssel, C., Hopfensitz, M. & Kestler, H. A. BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26, 1378–1380 (2010).
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 1–16 (2011).
De Kok, J. B. et al. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab. Investig. 85, 154–159 (2005).
Martinez-Sanchez, M. E., Huerta, L., Alvarez-Buylla, E. R. & Luján, C. V. Role of cytokine combinations on CD4+T cell differentiation, partial polarization, and plasticity: continuous network modeling approach. Front. Physiol. 9, 1–14 (2018).
Sánchez-Corrales, Y. E., Álvarez-Buylla, E. R. & Mendoza, L. The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. J. Theor. Biol. 264, 971–983 (2010).
Tijssen, M. R. et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev. Cell 20, 597–609 (2011).
Li, X. et al. Subnuclear targeting of Runx1 Is required for synergistic activation of the myeloid specific M‐CSF receptor promoter by PU.1. J. Cell Biochem. 96, 795–809 (2005).
Nottingham, W. T. et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110, 4188–4197 (2007).
Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).
Martinez, M. et al. Transcriptional auto-regulation of RUNX1 P1 promoter. PLoS ONE 11, 149119 (2016).
Zhou, J., Zhang, X., Wang, Y. & Guan, Y. PU.1 affects proliferation of the human acute myeloid leukemia U937 cell line by directly regulating MEIS1. Oncol. Lett. 10, 1912–1918 (2015).
Loke, J. et al. RUNX1-ETO and RUNX1-EVI1 differentially reprogram the chromatin landscape in t(8;21) and t(3;21) AML. Cell Rep. 19, 1654–1668 (2017).
Wang, Q. F. et al. Regulation of MEIS1 by distal enhancer elements in acute leukemia. Leukemia 28, 138–146 (2014).
Chowdhury, A. H. et al. Differential transcriptional regulation of meis1 by Gfi1b and its co-factors LSD1 and CoREST. PLoS ONE 8, e53666 (2013).
Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia- inducible factor 1α. Genes Dev. 14, 34–44 (2000).
Bakker, W. J., Harris, I. S. & Mak, T. W. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol. Cell 28, 941–953 (2007).
Yu, L. et al. Modeling the genetic regulation of cancer metabolism: Interplay between glycolysis and oxidative phosphorylation. Cancer Res. 77, 1564–1574 (2017).
Kaewpila, S., Venkataraman, S., Buettner, G. R. & Oberley, L. W. Manganese superoxide dismutase modulates hypoxia-inducible factor-1α induction via superoxide. Cancer Res. 68, 2781–2788 (2008).
Li, X. N. et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes 58, 2246–2257 (2009).
Renault, V. M. et al. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 30, 3207–3221 (2011).
Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Investig. 119, 3573–3585 (2009).
Wölfler, A. et al. Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors. Blood 116, 4116–4125 (2010).
Wang, P., Guan, D., Zhang, X. P., Liu, F. & Wang, W. Modeling the regulation of p53 activation by HIF-1 upon hypoxia. FEBS Lett. 593, 2596–2611 (2019).
Rueda-Rincon, N. et al. p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget 6, 21240–21254 (2015).
Azad, P. et al. ARID1B, a molecular suppressor of erythropoiesis, is essential for the prevention of Monge’s disease. Exp. Mol. Med. 54, 1–11 (2022).
Tschan, M. P. et al. PU.1 binding to the p53 family of tumor suppressors impairs their transcriptional activity. Oncogene 27, 3489–3493 (2008).
Moriguchi, T. & Yamamoto, M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int. J. Hematol. 100, 417–424 (2014).
Moignard, V. et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat. Cell Biol. 15, 363–372 (2013).
Fischer, M., Schwarz, R., Riege, K., DeCaprio, J. A. & Hoffmann, S. TargetGeneReg 2.0: a comprehensive web-atlas for p53, p63, and cell cycle-dependent gene regulation. NAR Cancer 4, zcac009 (2022).
Zhao, W., Kitidis, C., Fleming, M. D., Lodish, H. F. & Ghaffari, S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107, 907–915 (2006).
Yokomizo, T. et al. Runx1 is involved in primitive erythropoiesis in the mouse. Blood 111, 4075–4080 (2008).
Hu, Z. et al. RUNX1 regulates corepressor interactions of PU.1. Blood 117, 6498–6508 (2011).
Burda, P. et al. GATA-1 inhibits PU.1 gene via DNA and histone H3K9 methylation of its distal enhancer in erythroleukemia. PLoS ONE 11, 1–18 (2016).
Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl Acad. Sci. USA 96, 8705–8710 (1999).
Dahl, R., Iyer, S. R., Owens, K. S., Cuylear, D. D. & Simon, M. C. The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. J. Biol. Chem. 282, 6473–6483 (2007).
Guo, H., Ma, O., Speck, N. A. & Friedman, A. D. Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis. Blood 119, 4408–4418 (2012).
Burda, P. et al. PU.1 Activation Relieves GATA-1-Mediated Repression of Cebpa and Cbfb during Leukemia Differentiation. Mol. Cancer Res. 7, 1693–1703 (2009).
Yoshida, T. et al. Transcriptional regulation of the Ikzf1 locus. Blood 122, 3149–3159 (2013).
Zhou, N. et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia 33, 2001–2006 (2019).
Chan, L. N. & Müschen, M. B-cell identity as a metabolic barrier against malignant transformation. Exp. Hematol. 53, 1–6 (2017).
Lidonnici, M. R. et al. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBPα and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res. 70, 7949–7959 (2010).
Odaira, K. et al. Functional inhibition of MEF2 by C/EBP is a possible mechanism of leukemia development by CEBP-IGH fusion gene. Cancer Sci. 114, 781–792 (2023).
Dan, H. C. et al. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem. 289, 25227–25240 (2014).
Liu, X. et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc. Natl Acad. Sci. USA 111, E435–E444 (2014).
Feng, Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb. Perspect. Biol. 2, 1–10 (2010).
Kovacic, S. et al. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J. Biol. Chem. 278, 39422–39427 (2003).
Li, W. & Wang, J. Uncovering the underlying mechanisms of cancer metabolism through the landscapes and probability flux quantifications. iScience 23, 1–21 (2020).
Zhelev, Z. et al. A ‘weird’ mitochondrial fatty acid oxidation as a metabolic ‘secret’ of cancer. Oxid. Med. Cell Longev. 2022, 1–38 (2022).
Wang, X., McCullough, K. D., Franke, T. F. & Holbrook, N. J. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem. 275, 14624–14631 (2000).
Nasimian, A., Farzaneh, P., Tamanoi, F. & Bathaie, S. Z. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: the role of FOXO3a, PTEN and AKT signaling. Biochem. Pharm. 177, 113999 (2020).
Afonso, V., Champy, R., Mitrovic, D., Collin, P. & Lomri, A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Jt. Bone Spine 74, 324–329 (2007).
Trombetti, S. et al. Exploring the leukemogenic potential of gata-1s, the shorter isoform of gata-1: novel insights into mechanisms hampering respiratory chain complex ii activity and limiting oxidative phosphorylation efficiency. Antioxidants 10, 1–22 (2021).
Hervouet, E. et al. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis 29, 1528–1537 (2008).
Sun, J. et al. ROS production and mitochondrial dysfunction driven by PU.1-regulated NOX4-p22phox activation in Aβ-induced retinal pigment epithelial cell injury. Theranostics 10, 11637–11655 (2020).
Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L. A. & Seliger, B. Hydrogen peroxide—production, fate and role in redox signaling of tumor cells. Cell Commun. Signal. 13, 1–19 (2015).
Masschelin, P. M., Cox, A. R., Chernis, N. & Hartig, S. M. The impact of oxidative stress on adipose tissue energy balance. Front Physiol. 10, 1638 (2020).
Case, A. J., Madsen, J. M., Motto, D. G., Meyerholz, D. K. & Domann, F. E. Manganese superoxide dismutase depletion in murine hematopoietic stem cells perturbs iron homeostasis, globin switching, and epigenetic control in erythrocyte precursorcells. Free Radic. Biol. Med. 56, 17–27 (2013).
Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).
Dejean, A. S., Hedrick, S. M. & Kerdiles, Y. M. Highly specialized role of forkhead Box O transcription factors in the immune system. Antioxid. Redox Signal. 14, 663–674 (2011).
Marinkovic, D. et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J. Clin. Investig. 117, 2133–2144 (2007).
Morita, M. et al. MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).
Shaik, Z. P., Fifer, E. K. & Nowak, G. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury. Am. J. Physiol. Ren. Physiol. 294, F423–F432 (2008).
Mehta, A. et al. The MicroRNA-132 and MicroRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity 42, 1021–1032 (2015).
Quintana-Bustamante, O. et al. Overexpression of wild-type or mutants forms of CEBPA alter normal human hematopoiesis. Leukemia 26, 1537–1546 (2012).
Suh, H. C. et al. C/EBPα determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 107, 4308–4316 (2006).
Hönes, J. M. et al. Enforced GFI1 expression impedes human and murine leukemic cell growth. Sci. Rep. 7, 1–13 (2017).
McIvor, Z. et al. Transient expression of PU.1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation. Exp. Hematol. 31, 39–47 (2003).
Ahmed, N. et al. Blood stem cell PU.1 upregulation is a consequence of differentiation without fast autoregulation. J. Exp. Med. 219, e20202490 (2022).
Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).
Gutiérrez, L., Caballero, N., Fernández‐Calleja, L., Karkoulia, E. & Strouboulis, J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 72, 89–105 (2020).
Tipping, A. J. et al. High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113, 2661–2672 (2009).
Nandakumar, S. K. et al. Low-level GATA2 overexpression promotes myeloid progenitor self-renewal and blocks lymphoid differentiation in mice. Exp. Hematol. 43, 565–577.e10 (2015).
Cai, M. et al. Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation. Blood 120, 335–346 (2012).
Tsuzuki, S. et al. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med. 4, e172 (2007).
Kuvardina, O. N. et al. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood 125, 3570–3579 (2015).
Schüler, A. et al. The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate. Blood 111, 4532–4541 (2008).
Gan, B. et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl Acad. Sci. USA 105, 19384–19389 (2008).
Chen, C. et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).
Liu, X. et al. Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood 125, 1562–1565 (2015).
Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).
Eliasson, P. et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term–reconstituting hematopoietic stem cells during in vitro culture. Exp. Hematol. 38, 301–310.e2 (2010).
Mantel, C. R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553–1565 (2015).
Rimmele, P. et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 16, 1164–1176 (2015).
Ye, M. et al. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat. Cell Biol. 15, 385–394 (2013).
Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004).
Hock, H. et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18, 109–120 (2003).
Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).
Nutt, S. L., Metcalf, D., D’Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201, 221–231 (2005).
Gutiérrez, L. et al. Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 111, 4375–4385 (2008).
Shimizu, R., Takahashi, S., Ohneda, K., Engel, J. D. & Yamamoto, M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 20, 5250–5260 (2001).
Menendez-Gonzalez, J. B. et al. Gata2 as a crucial regulator of stem cells in adult hematopoiesis and acute myeloid leukemia. Stem Cell Rep. 13, 291–306 (2019).
Abdelfattah, A. et al. Gata2 haploinsufficiency promotes proliferation and functional decline of hematopoietic stem cells with myeloid bias during aging. Blood Adv. 5, 4285–4290 (2021).
Chen, J. et al. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp. Hematol. 36, 1236–1243 (2008).
Miller, M. E., Rosten, P., Lemieux, M. E., Lai, C. & Humphries, R. K. Meis1 is required for adult mouse erythropoiesis, megakaryopoiesis and hematopoietic stem cell expansion. PLoS ONE 11, e0151584 (2016).
Ariki, R. et al. Homeodomain transcription factor Meis1 is a critical regulator of adult bone marrow hematopoiesis. PLoS ONE 9, 1–11 (2014).
Growney, J. D. et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106, 494–504 (2005).
Ichikawa, M. et al. AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J. Immunol. 180, 4402–4408 (2008).
Agnihotri, P., Robertson, N. M., Umetsu, S. E., Arakcheeva, K. & Winandy, S. Lack of Ikaros cripples expression of Foxo1 and its targets in naive T cells. Immunology 152, 494–506 (2017).
Yoshida, T., Yao-Ming Ng, S., Zuniga-Pflucker, J. C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).
Guo, F. et al. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis. Haematologica 98, 1353–1358 (2013).
Fan, C. et al. Adaptive responses to mTOR gene targeting in hematopoietic stem cells reveal a proliferative mechanism evasive to mTOR inhibition. Proc. Natl Acad. Sci. USA 118, e2020102118 (2021).
Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).
Juntilla, M. M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030–4038 (2010).
Gupta, R., Karpatkin, S. & Basch, R. S. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood 107, 1837–1846 (2006).
Zhao, Y. et al. A novel redox regulator, MnTnBuOE-2-PyP5+, enhances normal hematopoietic stem/progenitor cell function. Redox Biol. 12, 129–138 (2017).
Mohanty, J. G., Nagababu, E., Friedman, J. S. & Rifkind, J. M. SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation. Exp. Hematol. 41, 316–321 (2013).
Martin, F. M., Xu, X., von Löhneysen, K., Gilmartin, T. J. & Friedman, J. S. SOD2 deficient erythroid cells up-regulate transferrin receptor and down-regulate mitochondrial biogenesis and metabolism. PLoS One 6, e16894 (2011).
Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).
Yu, W.-M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).
Hermitte, F., Brunet de la Grange, P., Belloc, F., Praloran, V. & Ivanovic, Z. Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 24, 65–73 (2006).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41540-024-00469-8