Search
Close this search box.

A comprehensive DNA barcoding of Indian freshwater fishes of the Indus River system, Beas – Scientific Reports

  • Ko, H. L. et al. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS ONE 8, e53451. https://doi.org/10.1371/journal.pone.0053451 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharya, M. et al. DNA barcoding to fishes: Current status and future directions. Mitochondr. DNA Part A 27, 2744–2752. https://doi.org/10.3109/19401736.2015.1046175 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Krishna-Krishnamurthy, P. & Francis, R. A. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodivers. Conserv. 21, 1901–1919. https://doi.org/10.1007/s10531-012-0306-2 (2012).

    Article 

    Google Scholar
     

  • Hebert, P. D., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257. https://doi.org/10.1111/ele.12162 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lara, A. et al. DNA barcoding of Cuban freshwater fishes: Evidence for cryptic species and taxonomic conflicts. Mol. Ecol. Resour. 10, 421–430. https://doi.org/10.1111/j.1755-0998.2009.02785.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. DNA barcoding Australia’s fish species. Philos. Philos. Trans. R Soc. Lond. B Biol. Sci. 360, 1847–1857 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zemlak, T. S., Ward, R. D., Connell, A. D., Holmes, B. H. & Hebert, P. D. DNA barcoding reveals overlooked marine fishes. Mol. Ecol. Resour. 9, 237–242 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ude, G. N. et al. DNA barcoding for identification of fish species from freshwater in Enugu and Anambra States of Nigeria. Conserv. Genet. Resour. 12, 643–658 (2020).

    Article 

    Google Scholar
     

  • Ali, F. S., Ismail, M. & Aly, W. DNA barcoding to characterize biodiversity of freshwater fishes of Egypt. Mol. Biol. Rep. 47, 5865–5877 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kress, W. J., García-Robledo, C., Uriarte, M. & Erickson, D. L. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. 30, 25–35 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Korshunova, T. et al. Multilevel fine-scale diversity challenges the ‘cryptic species’ concept. Sci. Rep. 9, 6732 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, C. P. & Allmon, W. D. How we study cryptic species and their biological implications: A case study from marine shelled gastropods. Ecol. Evol. 13, e10360 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fourie, A., Wingfield, M. J., Wingfield, B. D. & Barnes, I. Molecular markers delimit cryptic species in Ceratocystis sensu stricto. Mycol. Prog. 14, 1–18 (2015).

    Article 

    Google Scholar
     

  • Obase, K., Douhan, G. W., Matsuda, Y. & Smith, M. E. Revisiting phylogenetic diversity and cryptic species of Cenococcum geophilum sensu lato. Mycorrhiza 26, 529–540 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Holzer, A. S. et al. ‘Who’s who’in renal sphaerosporids (Bivalvulida: Myxozoa) from common carp, Prussian carp and goldfish–molecular identification of cryptic species, blood stages and new members of Sphaerospora sensu stricto. Parasitology 140, 46–60 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Casetta, E., Marques-da-Silva, J. & Vecchi, D. From Assessing To Conserving Biodiversity: Conceptual and Practical Challenges 452 (Springer Nature, 2019).

    Book 

    Google Scholar
     

  • Puckridge, M., Andreakis, N., Appleyard, S. A. & Ward, R. D. Cryptic diversity in flathead fishes (Scorpaeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Mol. Ecol. Resour. 13, 32–42 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hubert, N. et al. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. PLoS One 7, e28987. https://doi.org/10.1371/journal.pone.0028987 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mat Jaafar, T. N. A., Taylor, M. I., Mohd Nor, S. A., de Bruyn, M. & Carvalho, G. R. DNA barcoding reveals cryptic diversity within commercially exploited Indo-Malay Carangidae (Teleosteii: Perciformes). PLoS One 7, e49623. https://doi.org/10.1371/journal.pone.0049623 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyiola, O. A. et al. DNA barcoding of economically important freshwater fish species from north-central Nigeria uncovers cryptic diversity. Ecol. Evol. 8, 6932–6951. https://doi.org/10.1002/ece3.4210 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winterbottom, R., Hanner, R. H., Burridge, M. & Zur, M. A cornucopia of cryptic species-a DNA barcode analysis of the gobiid fish genus Trimma (Percomorpha, Gobiiformes). ZooKeys 381, 79–111. https://doi.org/10.3897/zookeys.381.6445 (2014).

    Article 

    Google Scholar
     

  • Hyde, J. R., Underkoffler, K. E. & Sundberg, M. A. DNA barcoding provides support for a cryptic species complex within the globally distributed and fishery important opah (Lampris guttatus). Mol. Ecol. Resour. 14, 1239–1247. https://doi.org/10.1111/1755-0998.12268 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T., Zhang, Y. P., Yang, Z. Y., Liu, Z. & Du, Y. Y. DNA barcoding reveals cryptic diversity in the underestimated genus Triplophysa (Cypriniformes: Cobitidae, Nemacheilinae) from the northeastern Qinghai-Tibet Plateau. BMC Evol. Biol. 20, 1–15. https://doi.org/10.1186/s12862-020-01718-0 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Doorenweerd, C., San Jose, M., Barr, N., Leblanc, L. & Rubinoff, D. Highly variable COI haplotype diversity between three species of invasive pest fruit fly reflects remarkably incongruent demographic histories. Sci. Rep. 10, 6887. https://doi.org/10.1038/s41598-020-63973-x (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Genetic diversity and variation of seven Chinese grass shrimp (Palaemonetes sinensis) populations based on the mitochondrial COI gene. BMC Ecol. Evol. 21, 167. https://doi.org/10.1186/s12862-021-01893-8 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J. et al. Genetic diversity analysis of brown marmorated stink bug, Halyomorpha halys based on mitochondrial COI and COII haplotypes. BMC Genom. Data 22, 1–16. https://doi.org/10.1186/s12863-021-00961-8 (2021).

    Article 

    Google Scholar
     

  • Goodall-Copestake, W. P., Tarling, G. A. & Murphy, E. On the comparison of population-level estimates of haplotype and nucleotide diversity: A case study using the gene cox1 in animals. Heredity 109, 50–56. https://doi.org/10.1038/hdy.2012.12 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G. et al. Genetic diversity and phylogeography of Taenioides cirratus in five geographical populations based on mitochondrial COI and Cytb gene sequences. J. Appl. Ichthyol. 2023, 4459823. https://doi.org/10.1155/2023/4459823 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Froese, R. FishBase. world wide web electronic publication. http://www.fishbase.org (2022).

  • Moza, U. & Mishra, D. N. River Beas Ecology and Fishery (Central Inland Fisheries Research Institute, 2007).

  • Kumar, A. & Khanna, D. R. Ichthyofaunal diversity in upper stretches of River Beas, Himachal Pradesh, India. IJRBAT 2, 269–275 (2014).


    Google Scholar
     

  • Kumar, A. Hydrological conditions of river Beas and its fish fauna in Kullu Valley, Himachal Pradesh, India. Environ. Conserv. J. 11, 7–10. https://doi.org/10.36953/ECJ.2010.110302 (2010).

    Article 

    Google Scholar
     

  • Dua, A. & Parkash, C. Distribution and abundance of fish populations in Harike wetland-A Ramsar site in India. J. Environ. Biol. 30, 247–251 (2009).

    PubMed 

    Google Scholar
     

  • Kaur, H., Datta, S. N. & Singh, A. Fish catch composition and biodiversity indices at harike wetland-a ramsar site in India. J. Anim. Res. 7, 935–941. https://doi.org/10.5958/2277-940X.2017.00142.5 (2017).

    Article 

    Google Scholar
     

  • Lostrom, S. et al. Linking stream ecology with morphological variability in a native freshwater fish from semi-arid Australia. Ecol. Evol. 5, 3272–3287. https://doi.org/10.1002/ece3.1590 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jindal, R., Singh, H. & Sharma, C. Fish diversity of Pong dam reservoir and Harike wetland. Int. J. Appl. Sci. Eng. 3, 232–240. https://doi.org/10.6088/ijaser.030100023 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lakra, W. S. et al. DNA barcoding Indian marine fishes. Mol. Ecol. Resour. 11, 60–71. https://doi.org/10.1111/j.1755-0998.2010.02894.x (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakra, W. S. et al. DNA barcoding Indian freshwater fishes. Mitochondr. DNA A DNA Mapp. Seq. Anal. 27, 4510–4517. https://doi.org/10.3109/19401736.2015.1101540 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bingpeng, X. et al. DNA barcoding for identification of fish species in the Taiwan Strait. PloS One 13, e0198109. https://doi.org/10.1371/journal.pone.0198109 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modeel, S., Joshi, B. D., Yadav, S., Bharti, M. & Negi, R. K. Mitochondrial DNA reveals shallow population genetic structure in economically important Cyprinid fish Labeo rohita (Hamilton, 1822) from South and Southeast Asia. Mol. Biol. Rep. 50, 1–9. https://doi.org/10.1007/s11033-023-08386-5 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hubert, N. et al. Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3, e2490. https://doi.org/10.1371/journal.pone.0002490 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khedkar, G. D., Jamdade, R., Naik, S., David, L. & Haymer, D. DNA barcodes for the fishes of the Narmada, one of India’s longest rivers. PloS One 9, e101460. https://doi.org/10.1371/journal.pone.0101460 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey, P. K. et al. DNA barcoding and phylogenetics of freshwater fish fauna of Ranganadi River, Arunachal Pradesh. Gene 754, 144860. https://doi.org/10.1016/j.gene.2020.144860 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rees, D. J. et al. Global phylogeography suggests extensive eucosmopolitanism in Mesopelagic Fishes (Maurolicus: Sternoptychidae). Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-020-77528-7 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, W., Ma, X., Shen, Y., Mao, Y. & He, S. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Sci. Rep. 5, 17437. https://doi.org/10.1038/srep17437 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhtar, T. & Ali, G. DNA barcoding of Schizothorax species from the Neelum and Jhelum Rivers of Azad Jammu and Kashmir. Mitochondr. DNA B: Resour. 1, 934–936. https://doi.org/10.1080/23802359.2016.1258337 (2016).

    Article 

    Google Scholar
     

  • Baskett, M. L. & Gomulkiewicz, R. Introgressive hybridization as a mechanism for species rescue. Theor. Ecol. 4, 223–239. https://doi.org/10.1007/s12080-011-0118-0 (2011).

    Article 

    Google Scholar
     

  • Tan, M. & Armbruster, J. W. Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa 4476, 6–39. https://doi.org/10.11646/zootaxa.4476.1.4 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes). Mol. Phylogenet. Evol. 65, 362–379. https://doi.org/10.1016/j.ympev.2012.06.007 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, L. P., Chen, X. Y. & Yang, J. X. Molecular phylogeny and systematic revision of Bangana sensu lato (Teleostei, Cyprinidae). J. Zool. Syst. Evol. Res. 57, 884–891. https://doi.org/10.1111/jzs.12294 (2019).

    Article 

    Google Scholar
     

  • Rahman, M. M., Norén, M., Mollah, A. R. & Kullander, S. The identity of Osteobrama cotio, and the status of “Osteobrama serrata” (Teleostei: Cyprinidae: Cyprininae). Zootaxa 4504, 105–118. https://doi.org/10.11646/zootaxa.4504.1.5 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Cisneros, A. et al. Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. Mol. Ecol. 27, 752–772. https://doi.org/10.1111/mec.14454 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi, B. D. et al. Understanding genetic diversity and population genetic structure of three Cyprinidae fishes occupying the same habitat from Uttarakhand, India. Mitochondr. DNA B: Resour. 4, 2956–2961. https://doi.org/10.1080/23802359.2019.1662740 (2019).

    Article 

    Google Scholar
     

  • Negi, R. K., Joshi, B. D., Johnson, J. A. & Goyal, S. P. Application of computational methods in fish species identification based on mitochondrial DNA sequences. Curr. Sci. 2172–2176, 2016. https://doi.org/10.18520/cs/v110/i11/2172-2176 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of birds through DNA barcodes. PLoS Biol. 2, e312. https://doi.org/10.1371/journal.pbio.0020312 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricciardi, A. & Kipp, R. Predicting the number of ecologically harmful exotic species in an aquatic system. Divers. Distrib. 14, 374–380. https://doi.org/10.1111/j.1472-4642.2007.00451.x (2008).

    Article 

    Google Scholar
     

  • Sharma, I. & Dhanze, R. Length-weight relationship of Schizothorax richardsonii (Gray) from Indus (beas river system, HP) India. Rec. Zool. Surv. India 111, 63–70. https://doi.org/10.26515/rzsi/v111/i1/2011/158892 (2011).

    Article 

    Google Scholar
     

  • Ibrahim, A. et al. Skin marks on the Indus River Dolphin (Platanista minor) and their implications for conservation. Pak. J. Zool. 54, 2329–2336. https://doi.org/10.17582/journal.pjz/20210828090819 (2021).

    Article 

    Google Scholar
     

  • Singh, S. Punjab: Large number of fish found dead in Beas river due to release of sugar mill fluid. Hindustan Times. https://www.hindustantimes.com/punjab/punjab-large-number-of-fish-found-dead-in-beas/story-0XDIbfquUB0h2evGF9qskN.html (2018).

  • Talwar, P. K. & Jhingran, A. G. Inland Fishes of India and Adjacent Countries (CRC Press, 1991).


    Google Scholar
     

  • Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (eds. Inglis, J. et al.) 11–71 (Cold spring harbor laboratory press, 1989).

  • Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120. https://doi.org/10.1007/BF01731581 (1980).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ratnasingham, S. & Hebert, P. D. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).

    Article 

    Google Scholar
     

  • Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar