
Sutherland, E. W. & Rall, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem. 232(2), 1077–1091 (1958).
Yau, K. W. Cyclic nucleotide-gated channels: an expanding new family of ion channels. Proc Natl Acad Sci U S A 91(9), 3481–3483 (1994).
Houslay, M. D. & Milligan, G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem. Sci. 22(6), 217–224 (1997).
Francis, S. H., Blount, M. A. & Corbin, J. D. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol. Rev. 91(2), 651–690 (2011).
Taylor, S. S. et al. Structural framework for the protein kinase family. Annu Rev Cell Biol 8, 429–462 (1992).
Bos, J. L. Epac: A new cAMP target and new avenues in cAMP research. Nat. Rev. Mol. Cell Biol. 4(9), 733–738 (2003).
Zaccolo, M. & Pozzan, T. CAMP and Ca2+ interplay: A matter of oscillation patterns. Trends Neurosci. 26(2), 53–55 (2003).
Brand, T. The Popeye domain-containing gene family. Cell Biochem. Biophys. 43(1), 95–103 (2005).
Brisson, G. R., Malaisse-Lagae, F. & Malaisse, W. J. The stimulus-secretion coupling of glucose-induced insulin release. VII. A proposed site of action for adenosine-3’,5’-cyclic monophosphate. J. Clin. Investig. 51(2), 232–241 (1972).
Rous, S. Effect of dibutyryl cAMP on the enzymes of fatty acid synthesis and of glycogen metabolism. FEBS Lett. 12(1), 45–48 (1970).
Geelen, M. J. & Vaartjes, W. J. Levels of cyclic 3’-5’-adenosine monophosphate (cAMP) in maintenance cultures of rat hepatocytes in response to insulin and glucagon. Lipids 12(7), 577–580 (1977).
Stork, P. J. & Schmitt, J. M. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12(6), 258–266 (2002).
Weissinger, E. M. et al. Inhibition of the Raf-1 kinase by cyclic AMP agonists causes apoptosis of v-abl-transformed cells. Mol. Cell Biol. 17(6), 3229–3241 (1997).
Suen, D. F., Norris, K. L. & Youle, R. J. Mitochondrial dynamics and apoptosis. Genes Dev. 22(12), 1577–1590 (2008).
Yamamoto, K. K., Gonzalez, G. A., Biggs, W. H. 3rd. & Montminy, M. R. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334(6182), 494–498 (1988).
Chen, L. et al. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc. Natl. Acad. Sci. USA 104(52), 20990–20995 (2007).
Marx, S. O. et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295(5554), 496–499 (2002).
Bernstein, H. G. et al. Increased density of AKAP5-expressing neurons in the anterior cingulate cortex of subjects with bipolar disorder. J. Psychiatr. Res. 47(6), 699–705 (2013).
Reissner, K. J. Proteomic analyses of PKA and AKAP signaling in cocaine addiction. Neuropsychopharmacology 38(1), 251–252 (2013).
Richter, S. et al. A potential role for a genetic variation of AKAP5 in human aggression and anger control. Front. Hum. Neurosci. 5, 175 (2011).
Millar, J. K. et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310(5751), 1187–1191 (2005).
Marquette, A. et al. ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat. Struct. Mol. Biol. 18(5), 584–591 (2011).
Landis, C. A. et al. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340(6236), 692–696 (1989).
Hinke, S. A. et al. Anchored phosphatases modulate glucose homeostasis. Embo J. 31(20), 3991–4004 (2012).
Zhang, C. L. et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science 325(5940), 607–610 (2009).
Czyzyk, T. A., Sikorski, M. A., Yang, L. & McKnight, G. S. Disruption of the RIIbeta subunit of PKA reverses the obesity syndrome of Agouti lethal yellow mice. Proc. Natl. Acad. Sci. USA 105(1), 276–281 (2008).
Calvin, H. I. et al. Induction of cortical cataracts in cultured mouse lenses with H-89, an inhibitor of protein kinase A. Curr. Eye Res. 27(5), 269–278 (2003).
Chochung, Y. Differentiation therapy of cancer targeting the ri-alpha regulatory subunit of cAMP-dependent protein-kinase (review). Int. J. Oncol. 3(2), 141–148 (1993).
Sapio, L. et al. Targeting protein kinase A in cancer therapy: An update. Excli J. 13, 843–855 (2014).
Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494(7436), 256–260 (2013).
Torres, V. E. & Harris, P. C. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J. Am. Soc. Nephrol. 25(1), 18–32 (2014).
Wouters, E. F. et al. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97(9), E1720–E1725 (2012).
Toya, Y., Schwencke, C. & Ishikawa, Y. Forskolin derivatives with increased selectivity for cardiac adenylyl cyclase. J. Mol. Cell Cardiol. 30(1), 97–108 (1998).
Beghè, B., Rabe, K. F. & Fabbri, L. M. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am. J. Respir. Crit. Care Med. 188(3), 271–278 (2013).
Mulhall, A. M. et al. Phosphodiesterase 4 inhibitors for the treatment of chronic obstructive pulmonary disease: A review of current and developing drugs. Expert Opin. Investig. Drugs 24(12), 1597–1611 (2015).
England, C. G., Ehlerding, E. B. & Cai, W. NanoLuc: A small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 27(5), 1175–1187 (2016).
Fan, F. & Wood, K. V. Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol. 5(1), 127–136 (2007).
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11(2), 400–408 (2016).
Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4(2), 67–73 (1999).
Hwang, B. B., Engel, L., Goueli, S. A. & Zegzouti, H. A homogeneous bioluminescent immunoassay to probe cellular signaling pathway regulation. Commun. Biol. 3, 8 (2020).
Conti, M. et al. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem. 278(8), 5493–5496 (2003).
Bobin, P. et al. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Arch. Cardiovasc. Dis. 109(6–7), 431–443 (2016).
Phillips, J. E. Inhaled phosphodiesterase 4 (PDE4) inhibitors for inflammatory respiratory diseases. Front. Pharmacol. 11, 259 (2020).
Sriram, K. & Insel, P. A. G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs?. Mol. Pharmacol. 93(4), 251–258 (2018).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-55038-0