γ-Glutamylcyclotransferase is transcriptionally regulated by c-Jun and controls proliferation of glioblastoma stem cells through Notch1 levels – Cancer Gene Therapy

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D, Jackson C, Peterson J, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147:297–307.

    Article 
    PubMed 

    Google Scholar
     

  • Sampetrean O, Saya H. Characteristics of glioma stem cells. Brain Tumor Pathol. 2013;30:209–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schonberg DL, Lubelski D, Miller TE, Rich JN. Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Asp Med. 2014;39:82–101.

    Article 
    CAS 

    Google Scholar
     

  • Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2:152–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen S-H, Yu N, Liu X-Y, Tan G-W, Wang Z-X. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling. Biochem Biophys Res Commun. 2016;471:616–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Z, Wang S, Shao Y, Zhang J, Wu X, Chen Y, et al. Ras downstream effector GGCT alleviates oncogenic stress. iScience. 2019;19:256–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakley AJ, Coggan M, Board PG. Identification and characterization of gamma-glutamylamine cyclotransferase, an enzyme responsible for gamma-glutamyl-epsilon-lysine catabolism. J Biol Chem. 2010;285:9642–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kageyama S, Ii H, Taniguchi K, Kubota S, Yoshida T, Isono T, et al. Mechanisms of tumor growth inhibition by depletion of γ-glutamylcyclotransferase (GGCT): a novel molecular target for anticancer therapy. Int J Mol Sci. 2018;19:2054.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumura K, Nakata S, Taniguchi K, Ii H, Ashihara E, Kageyama S, et al. Depletion of γ-glutamylcyclotransferase inhibits breast cancer cell growth via cellular senescence induction mediated by CDK inhibitor upregulation. BMC Cancer. 2016;16:748.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniguchi K, Matsumura K, Kageyama S, Ii H, Ashihara E, Chano T, et al. Prohibitin-2 is a novel regulator of p21WAF1/CIP1 induced by depletion of γ-glutamylcyclotransferase. Biochem Biophys Res Commun. 2018;496:218–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taniguchi K, Ii H, Kageyama S, Takagi H, Chano T, Kawauchi A, et al. Depletion of gamma-glutamylcyclotransferase inhibits cancer cell growth by activating the AMPK-FOXO3a-p21 axis. Biochem Biophys Res Commun. 2019;517:238–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taniguchi K, Matsumura K, Ii H, Kageyama S, Ashihara E, Chano T, et al. Depletion of gamma-glutamylcyclotransferase in cancer cells induces autophagy followed by cellular senescence. Am J Cancer Res. 2018;8:650–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ii H, Yoshiya T, Nakata S, Taniguchi K, Hidaka K, Tsuda S, et al. A novel prodrug of a γ-glutamylcyclotransferase inhibitor suppresses cancer cell proliferation in vitro and inhibits tumor growth in a xenograft mouse model of prostate cancer. ChemMedChem. 2018;13:155–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ii H, Nohara Y, Yoshiya T, Masuda S, Tsuda S, Oishi S, et al. Identification of U83836E as a γ-glutamylcyclotransferase inhibitor that suppresses MCF7 breast cancer xenograft growth. Biochem Biophys Res Commun. 2021;549:128–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ii H, Kasahara Y, Yamaguma H, Kageyama S, Kawauchi A, Obika S, et al. Administration of Gapmer-type Antisense Oligonucleotides Targeting γ-Glutamylcyclotransferase Suppresses the Growth of A549 Lung Cancer Xenografts. Anticancer Res. 2022;42:1221–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno Y, Hattori A, Ueda M, Kageyama S, Yoshiki T, Kakeya H. Multiple NF-Y-binding CCAAT boxes are essential for transcriptional regulation of the human C7orf24 gene, a novel tumor-associated gene. FEBS J. 2011;278:4088–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Q, Xia Y. c-Jun, at the crossroad of the signaling network. Protein Cell. 2011;2:889–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7:95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang X-F, White RR, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010;28:17–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y-Y, Zheng M-H, Cheng G, Li L, Liang L, Gao F, et al. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer. 2011;11:82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayin NS, Frenster JD, Sen R, Si S, Modrek AS, Galifianakis N, et al. Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget. 2017;8:64932–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding D, Lim KS, Eberhart CG. Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun. 2014;2:31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Trotta A, Guerrant W, Astudillo L, Lahiry M, Diluvio G, Shersher E. et al. Pharmacological disruption of the Notch1 transcriptional complex inhibits tumor growth by selectively targeting cancer stem cells. Cancer Res. 2021;81:3347–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noisa P, Lund C, Kanduri K, Lund R, Lähdesmäki H, Lahesmaa R, et al. Notch signaling regulates the differentiation of neural crest from human pluripotent stem cells. J Cell Sci. 2014;127:2083–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Teodorczyk M, Schmidt MHH. Notching on cancer’s door: Notch signaling in brain tumors. Front Oncol. 2015;4:341.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiesner SM, Decker SA, Larson JD, Ericson K, Forster C, Gallardo JL, et al. De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res. 2009;69:431–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanigawa S, Fujita M, Moyama C, Ando S, Ii H, Kojima Y, et al. Inhibition of Gli2 suppresses tumorigenicity in glioblastoma stem cells derived from a de novo murine brain cancer model. Cancer Gene Ther. 2021;28:1339–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moyama C, Fujita M, Ando S, Taniguchi K, Ii H, Tanigawa S, et al. Stat5b inhibition blocks proliferation and tumorigenicity of glioblastoma stem cells derived from a de novo murine brain cancer model. Am J Cancer Res. 2022;12:1129–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moyama C, Fujita M, Okamoto H, Ii H, Nakata S. Myb repression mediates Stat5b-knockdown-induced apoptosis and inhibits proliferation of glioblastoma stem cells. Cancer Genomics Proteom. 2023;20:195–202.

    Article 
    CAS 

    Google Scholar
     

  • Martz CA, Ottina KA, Singleton KR, Jasper JS, Wardell SE, Peraza-Penton A, et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014;7:ra121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Zhan X, D’Costa J, Tanavde VM, Ye Z, Peng T, et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther. 2003;7:827–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 2012;40:D1301–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005;65:2353–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002;8:979–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittal S, Sharma A, Balaji SA, Gowda MC, Dighe RR, Kumar RV, et al. Coordinate hyperactivation of Notch1 and Ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers. Mol Cancer Ther. 2014;13:3198–209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NNV, et al. Notch1-MAPK Signaling Axis Regulates CD133+ Cancer Stem Cell-Mediated Melanoma Growth and Angiogenesis. J Invest Dermatol. 2016;136:2462–74.

    Article 
    CAS 
    PubMed 

    Google Scholar